APPENDIX A

Historic Topographic Maps and Aerial Photos

Northbrook Homes Fairview Site

24850 Fairview Avenue Hayward, CA 94542

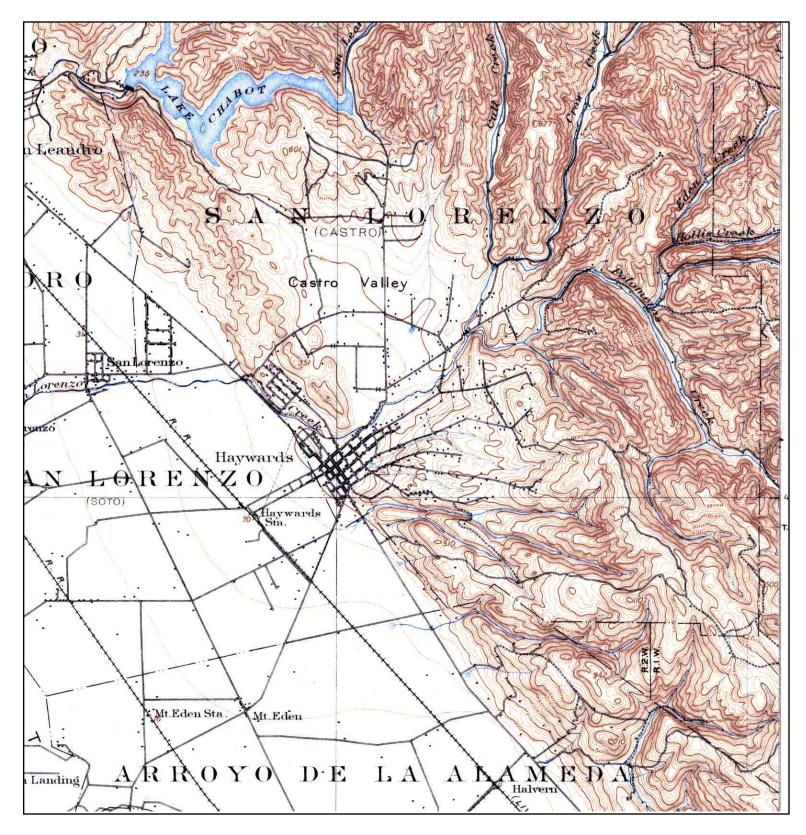
Inquiry Number: 3143080.4 August 08, 2011

EDR Historical Topographic Map Report

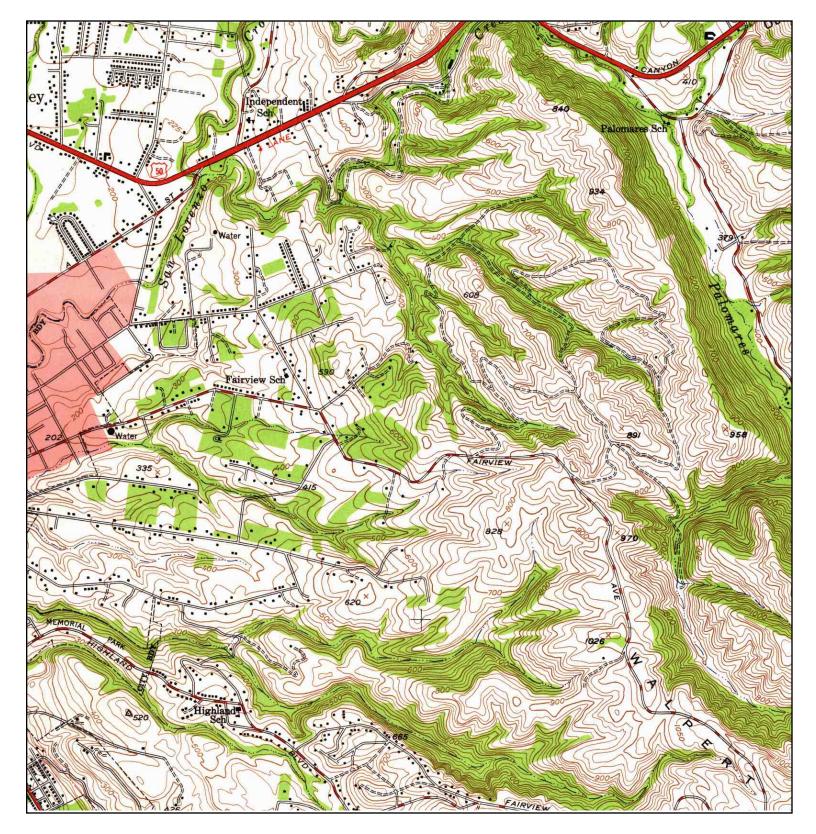
440 Wheelers Farms Road Milford, CT 06461 800.352.0050 www.edrnet.com

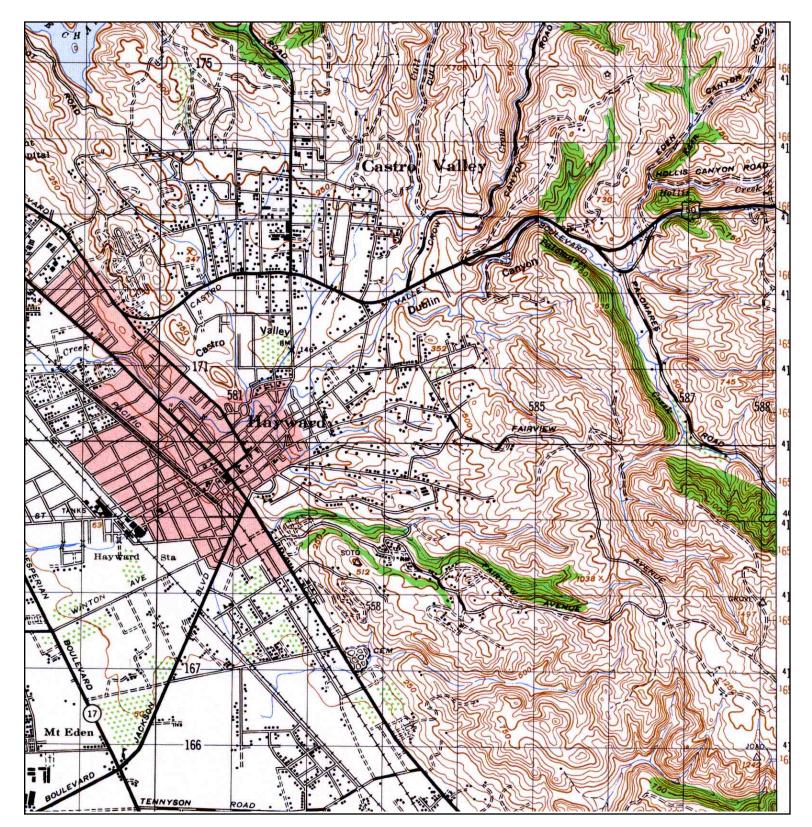
EDR Historical Topographic Map Report

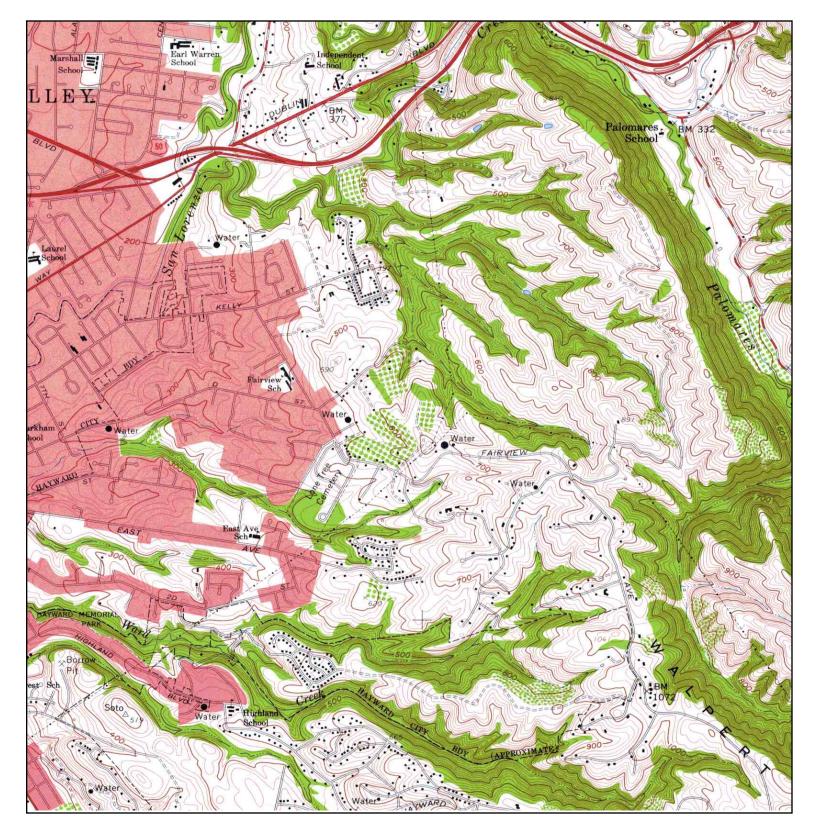
Environmental Data Resources, Inc.s (EDR) Historical Topographic Map Report is designed to assist professionals in evaluating potential liability on a target property resulting from past activities. EDRs Historical Topographic Map Report includes a search of a collection of public and private color historical topographic maps, dating back to the early 1900s.

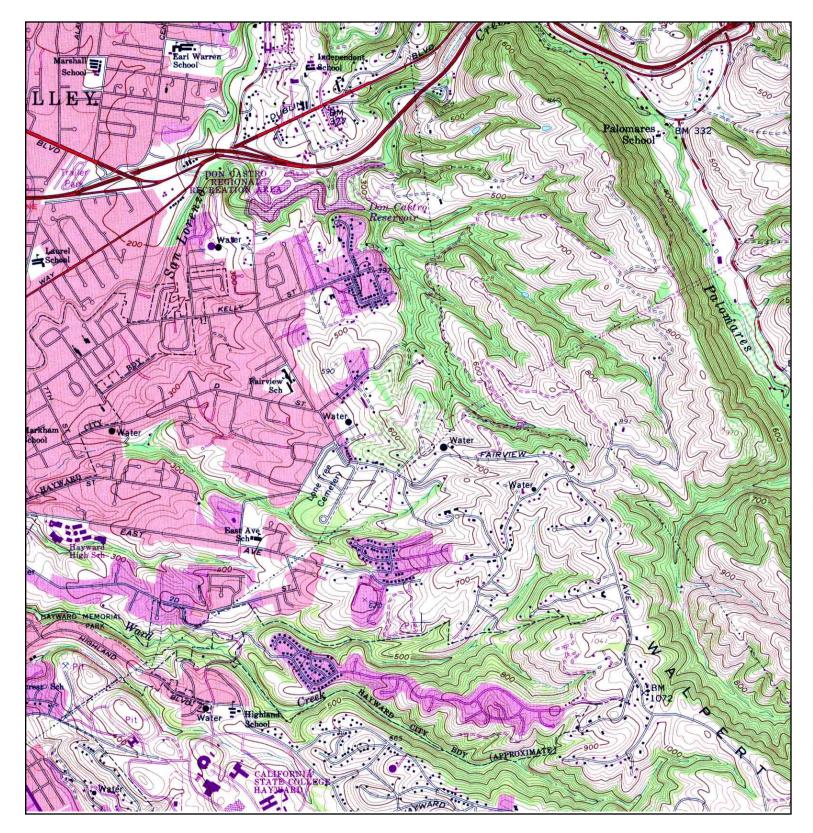

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

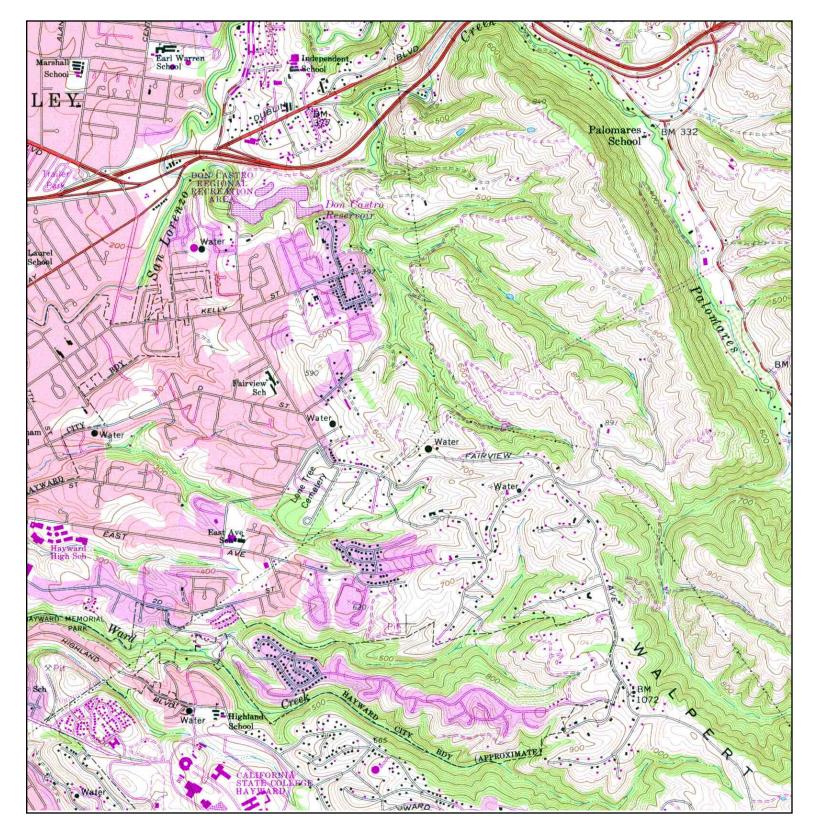
Disclaimer - Copyright and Trademark Notice


This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. **NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT.** Purchaser accepts this Report AS IS. Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.


Copyright 2011 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.


EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.


N	TARGET QU NAME: MAP YEAR: SERIES:	HAYWARDS 1899 15	ADDRESS:	Site	CLIENT: CONTACT: INQUIRY#: RESEARCH	Lamphier-Gregory Nathaniel Taylor 3143080.4 DATE: 08/08/2011
	SCALE:	1:62500				



NAME: MAP YEAR SERIES: SCALE:	HAYWARD AR: 1959 ADDRESS:	Northbrook Homes Fairview Site 24850 Fairview Avenue Hayward, CA 94542 37.6784 / -122.0425	CLIENT: CONTACT: INQUIRY#: RESEARCH	Lamphier-Gregory Nathaniel Taylor 3143080.4 DATE: 08/08/2011	
--	------------------------------	--	--	---	--

N	TARGET QUAD NAME: HAYWARD MAP YEAR: 1973 PHOTOREVISED:1959 SERIES: 7.5 SCALE: 1:24000	SITE NAME: Northbrook Homes Fairview Site ADDRESS: 24850 Fairview Avenue Hayward, CA 94542 LAT/LONG: 37.6784 / -122.0425	CLIENT: Lamphier-Gregory CONTACT: Nathaniel Taylor INQUIRY#: 3143080.4 RESEARCH DATE: 08/08/2011
---	--	--	---

×	TARGET QUAD NAME: HAYWARD MAP YEAR: 1980 PHOTOREVISED:1959 SERIES: 7.5 SCALE: 1:24000	SITE NAME: Northbrook Homes Fairview Site ADDRESS: 24850 Fairview Avenue Hayward, CA 94542 LAT/LONG: 37.6784 / -122.0425	CLIENT: Lamphier-Gregory CONTACT: Nathaniel Taylor INQUIRY#: 3143080.4 RESEARCH DATE: 08/08/2011
---	--	--	---

Northbrook Homes Fairview Site

24850 Fairview Avenue Hayward, CA 94542

Inquiry Number: 3143080.5 August 11, 2011

The EDR Aerial Photo Decade Package

440 Wheelers Farms Road Milford, CT 06461 800.352.0050 www.edrnet.com

Date EDR Searched Historical Sources:

Aerial Photography August 11, 2011

Target Property:

24850 Fairview Avenue Hayward, CA 94542

<u>Year</u>	<u>Scale</u>	<u>Details</u>	<u>Source</u>
1939	Aerial Photograph. Scale: 1"=555'	Flight Year: 1939	Fairchild
1946	Aerial Photograph. Scale: 1"=655'	Flight Year: 1946	Jack Ammann
1958	Aerial Photograph. Scale: 1"=555'	Flight Year: 1958	Cartwright
1965	Aerial Photograph. Scale: 1"=333'	Flight Year: 1965	Cartwright
1974	Aerial Photograph. Scale: 1"=601'	Flight Year: 1974	NASA
1982	Aerial Photograph. Scale: 1"=690'	Flight Year: 1982	USGS
1993	Aerial Photograph. Scale: 1"=604'	/Composite DOQQ - acquisition dates: 1993	EDR
1998	Aerial Photograph. Scale: 1"=666'	Flight Year: 1998	USGS
2005	Aerial Photograph. Scale: 1"=604'	Flight Year: 2005	EDR
2006	Aerial Photograph. Scale: 1"=604'	Flight Year: 2006	EDR

EDR Aerial Photo Decade Package

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

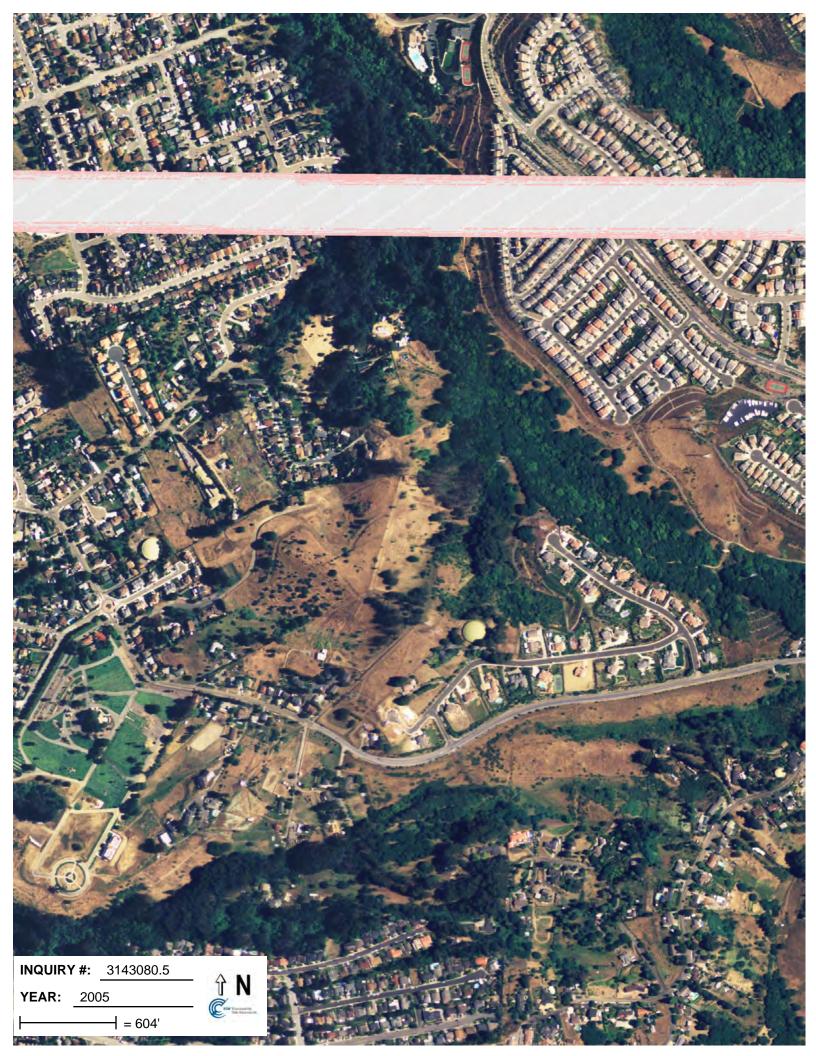
Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report AS IS. Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2011 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.



APPENDIX B

Olberding Environmental, Inc.,

Biological Resources Analyis Report for the Borel Bank Property.

BIOLOGICAL RESOURCES ANALYSIS REPORT

FOR THE

BOREL BANK PROPERTY

CASTRO VALLEY, CALIFORNIA

Prepared for:

NORTHBROOK HOMES, LLC

7020 Koll Center Parkway, Suite 101 Pleasanton, CA 94566

Prepared by:

OLBERDING ENVIRONMENTAL, INC. Wetland Regulatory Consultants 3170 Crow Canyon Place, Suite 260 San Ramon, California 94583

Phone: (925) 866-2111 ~ FAX (925) 866-2126 Contact: Jeff Olberding

JUNE 2010

TABLE OF CONTENTS

SUM	IMARY	1
1.0	INTRODUCTION	2
2.0	LOCATION	2
3.0	PROPERTY DESCRIPTION	2
4.0	REGULATORY SETTING	3
4.1	Federal Regulatory Setting	3
	4.1.1 Plants and Wildlife	
	4.1.2 Wetlands/Waters	
	4.1.3 Migratory Bird Treaty Act	4
	4.1.4 The Federal Bald and Golden Eagle Protection Act	
4.2	State Regulatory Setting	
	4.2.1 Plants and Wildlife	5
	4.2.2 Wetlands/Waters	6
	4.2.3 California Environmental Quality Act	
5.0	METHODS OF ANALYSIS FOR GENERAL BIOLOGICAL RESOURCES	7
5.1	Soils Evaluation	8
5.2	Plant Survey Methods	
	5.2.1 Review of Literature and Data Sources	9
	5.2.2 Field Surveys	
5.3	Wildlife Survey Methods	
	5.3.1 Review of Literature and Data Sources	
	5.3.2 Field Surveys	
6.0	RESULTS FOR GENERAL BIOLOGICAL RESOURCES	10
6.1	Soil Evaluation Results	
6.2	Plant Survey Results	12
	6.2.1 Floristic Inventory and Habitat Characterization	12
	6.2.2 Special-Status Plant Species	
6.3	Wildlife Survey Results	
	6.3.1 General Wildlife Species and Habitats	
	6.3.2 Special-Status Wildlife Species	
7.0	CONCLUSIONS	20
7.1	Wetlands	20
7.2	Special-Status Plants	20
7.3	Special-Status Wildlife	
8.0	LITERATURE CITED	23

ATTACHMENTS

ATTACHMENT 1 FIGURES

Figure 1	Regional Map
Figure 2	Vicinity Map
Figure 3	USGS Quadrangle Map for Hayward
Figure 4	Aerial Photograph
Figure 5	CNDDB Map of Special-Status Animals
Figure 6	CNDDB Map of Special-Status Plants
Figure 7	USFWS Designated Critical Habitat Locations
Figure 8	Soils Map

ATTACHMENT 2 TABLES

Table 1	Plant and Wildlife Species Observed Within/Adjacent to the Survey Area
Table 2	Special-Status Species Occurring within the Hayward, Dublin, Niles and Newark 7.5 Minute Quadrangle Maps

ATTACHMENT 3 SITE PHOTOGRAPHS

This report should be cited as: Olberding Environmental, Inc. June 2010. Biological Resources Analysis Report for the Borel Bank Property, Castro Valley, California. Prepared for Northbrook Homes, LLC, Pleasanton, California.

SUMMARY

On May 18, 2010, a field reconnaissance investigation of the Borel Bank Property (Property) was conducted for the purpose of identifying sensitive plant and wildlife species, sensitive habitats and potential biological constraints. The survey area for this report incorporates approximately 15 acres located north of Fairview Avenue in Castro Valley, California.

In summary, based on the initial reconnaissance survey, it was found that the Property contains areas that exhibited positive indicators of wetland soils, hydrology and vegetation. A constructed drainage feature (ditch) and areas containing standing water were observed during the May 2010 survey. Photographs are provided in Attachment 3. Based on the results of our reconnaissance survey, the site exhibited criteria used by the U.S. Army Corps of Engineers (Corps) to determine the presence of jurisdictional wetlands/waters. A formal Corps delineation would be required to verify the regulatory status of these features.

Based on suitable habitat types, soil conditions, and California Department of Fish and Game (CDFG) data base occurrences in the vicinity of the site, four special-status plant species were identified as having the potential to occur on the Property. These plants include big-scale balsamroot (*Balsamorhiza macrolepis* var. *macrolepis*), Congdon's tarplant (*Centromadia parryi* ssp. *congdonii*), fragrant fritillary (*Fritillaria liliacea*), and most beautiful jewel-flower (*Streptanthus albidus* ssp. *peramoenus*). Two of the four plants species, the Congdon's tarplant and fragrant fritillary, were presumed absent based on the historic nature of the last occurrence in the vicinity of the Property and the large distance separating the last know observation of these plants from the Property. Our May 2010 survey was performed during the recognized blooming period of the big-scale balsamroot and most beautiful jewel-flower. Neither species was observed during this survey. However, in order to document a negative finding, CDFG recommends multiple surveys to be performed over the entire blooming period of each species. June is identified as the last month of the blooming period for both the big-scale balsamroot and most beautiful jewel-flower. It is recommended that an additional survey be performed prior to July to substantiate a negative finding for these two species.

Several special-status bird and raptor species were also determined to have a potential to forage and nest near the site based on suitable habitat types, large trees, and recent occurrences in the vicinity of the Property. Therefore, a nesting bird survey 72 hours prior to the removal of vegetation and/or construction is required to determine absence or presence of nesting bird species. If required, surveys should be performed prior to January to identify any potential nesting trees prior to the birds lying eggs. Once eggs have been laid, a buffer of at least 150 feet must be established around the nest site and the site protected until August 15 or until the young have fledged. Due to the lack of small mammal burrows observed during the survey the Property is considered unsuitable to support the burrowing owl (*Athene cunicularia*). This species was not observed during the survey, nor was any secondary evidence of their occupation, and is presumed absent from the site.

1.0 INTRODUCTION

At the request of Northbrook Homes, LLC, Olberding Environmental has conducted a biological resources analysis of the Property, located within Castro Valley, Alameda County, California. This biological resources analysis includes pertinent literature on relevant background information and habitat characteristics of the site including the California Natural Diversity Database (CNDDB 2010) and the California Native Plant Society's (CNPS) Inventory of Rare and Endangered Vascular Plants of California, and a review of information related to species of plants and animals that could potentially utilize the described habitats. A field reconnaissance investigation of the Property was conducted on May 18, 2010. This report documents the methods, results and conclusions for the reconnaissance-level surveys associated with the biological resources analysis for the Property.

2.0 LOCATION

The survey area for this study is situated to the northeast of the intersection of Fairview Avenue and Walter Dinos Court. Attachment 1, Figure 1 depicts the regional location of the Property in Alameda County, while Attachment 1, Figure 2 illustrates the vicinity of the Property in relationship to the City of Castro Valley. Attachment 1, Figure 3 identifies the location of the Property on the USGS 7.5 Quadrangle Map for Hayward. An aerial photograph of the Property has been included as Attachment 1, Figure 4.

Access to the Property is attained by taking Interstate 580 West. Take the Castro Valley Exit and turn right. Make a right onto Five Canyons Parkway and follow it for 2.25 miles. Turn right onto Fairview Avenue and continue for 0.75 miles. The Property is situated to the north of Fairview Avenue prior to the intersection with Walter Dinos Court.

3.0 PROPERTY DESCRIPTION

The Property encompasses approximately 15 acres and roughly forms the shape of a rectangle, with the southern edge bound by Fairview Avenue. Elevation ranges on the Property from 567 feet along Fairview Avenue to 683 feet near the middle of the Property and 604 feet at the northern edge. The Property has few flat areas and is comprised predominantly of gently sloping hillsides. A dirt access road is located off of Fairview Avenue between the Property fence line and the residence located west of the Property.

The majority of the Property is composed of grazed, non-native annual grassland. Several pine trees occur on the southern portion of the Property near Fairview Avenue. Many tall eucalyptus trees occur just beyond the Property boundary near the northeast corner of the site. The Property is bound by barbed wire fencing. Several existing homes are located to the east and west of the Property, but the majority of the site is surrounded by open space.

At the time of the survey cows and horses were present on the Property. Three potential seasonal wetlands occur within the Property boundaries. One is located near the northeast corner of the

Property close to the eastern fence line. The second is located along the western fence line where a gate is located along the newly constructed road to the west of the Property. Both of these features are located in topographical depressions. A third potential wetland feature is located on the north facing slope of the hill located adjacent to Fairview Avenue. This feature is a potential wetland seep. A small incised drainage ditch is located along the western fence line parallel to a dirt access road. This ditch transports water in a north to south direction and flattens out prior to the Property boundary at Fairview Avenue.

4.0 REGULATORY SETTING

4.1 Federal Regulatory Setting

4.1.1 Plants and Wildlife

The federal Endangered Species Act (ESA) of 1973 (16 USC 1531 et seq., as amended) prohibits federal agencies from authorizing, permitting, or funding any action that would result in biological jeopardy to a plant or animal species listed as Threatened or Endangered under the Act. Listed species are taxa for which proposed and final rules have been published in the Federal Register (U.S. Fish and Wildlife Service [USFWS], 2009a and 2009b). If a proposed project may jeopardize listed species, Section 7 of the ESA requires consideration of those species through formal consultations with the USFWS. Federal Proposed species (USFWS, 2009c) are species for which a proposed listing as Threatened or Endangered under ESA has been published in the Federal Register. If a proposed project may jeopardize proposed species, Section 7 of the ESA affords consideration of those species as "those taxa for which we have on file sufficient information on biological vulnerability and threats to support issuance of a proposed rule to list, but issuance of the proposed rule is precluded by other higher priority listing actions" (USFWS, 2009c). Federal Candidate species are not afforded formal protection, although USFWS encourages other federal agencies to give consideration to Candidate species in environmental planning.

4.1.2 Wetlands/Waters

The federal government, acting through the U.S. Army Corps of Engineers (Corps) and the Environmental Protection Agency (EPA), has jurisdiction over all "waters of the United States" as authorized by §404 of the Clean Water Act (CWA) and §10 of the Rivers and Harbors Act of 1899 (33 CFR Parts 320-330). Properties that cause the discharge of dredged or fill material into waters of the United States require permitting by the Corps. Actions affecting small areas of jurisdictional waters of the United States may qualify for a Nationwide Permit (NWP), provided conditions of the permit are met, such as avoiding impacts to threatened or endangered species or to important cultural sites. Properties that affect larger areas or which do not meet the conditions of an NWP require an Individual Permit. The process for obtaining an Individual Permit requires a detailed alternatives analysis and development of a comprehensive mitigation/monitoring plan.

Waters of the United States are classified as wetlands, navigable waters, or other waters. Wetlands are transitional habitats between upland terrestrial areas and deeper aquatic habitats such as rivers and lakes. Under federal regulation, wetlands are defined as "those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal conditions do support, a prevalence of vegetation typically adapted for life in saturated soil conditions" (33 CFR Part 328.3[b]). Swamps, marshes, bogs, fens and estuaries are all defined as wetlands, as are seasonally saturated or inundated areas such as vernal pools, alkali wetlands, seeps, and springs. In addition, portions of the riparian habitat along a river or stream may be a wetland where the riparian vegetation is at or below the ordinary high water mark and thus also meets the wetland hydrology and hydric soil criteria.

Navigable waters include all waters subject to the ebb and flow of the tides, including the open ocean, tidal bays, and tidal sloughs. Navigable waters also include some large, non-tidal rivers and lakes, which are important for transportation in commerce. The jurisdictional limit over navigable waters extends laterally to the entire water surface and bed of the waterbody landward to the limits of the mean high tide line. For non-tidal rivers or lakes, which have been designated (by the Corps) to be navigable waters, the limit of jurisdiction along the shoreline is defined by the ordinary high water mark. Other waters refer to waters of the United States other than wetlands or navigable waters. Other waters can be perennial or intermittent water bodies and waterways. The Corps regulates other waters to the outward limit of the ordinary high water mark. Streams should exhibit a defined channel, bed and banks to be delineated as other waters.

The Corps does not generally consider "non-tidal drainage and irrigation ditches excavated on dry land" to be jurisdictional waters of the United States (and such ditches would therefore not be regulated by the Corps (33 CFR Parts 320-330, November 13, 1986). Other areas generally not considered jurisdictional waters include: 1) artificially irrigated areas that would revert to upland habitat if the irrigation ceased; 2) artificial lakes and ponds created by excavating and/or diking of dry land to collect and retain water, used exclusively for such purposes as stock watering, irrigation, settling basins, or rice growing; 3) waste treatment ponds; 4) ponds formed by construction activities including borrow pits until abandoned; and 5) ponds created for aesthetic reasons such as reflecting or ornamental ponds (33 CFR Part 328.3). However, the preamble also states that "the Corps reserves the right on a case-by-case basis to determine that a particular waterbody within these categories" can be regulated as a jurisdictional water. The EPA also has authority to determine jurisdictional waters of the U.S. on a case-by-case basis. Riparian habitat that is above the ordinary high water mark and does not meet the three-parameter criteria for a wetland, would not be regulated as jurisdictional waters of the U.S.

4.1.3 Migratory Bird Treaty Act

Raptors are migratory bird species protected by international treaty under the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703-711). The MBTA makes it unlawful to take, possess, buy, sell, purchase, or barter any migratory bird listed in 50 C.F.R. Part 10, including feathers or other parts, nests, eggs, or products, except as allowed by implementing regulations (50 C.F.R. 21). Sections 3503, 3503.5, and 3800 of the California Department of Fish and Game Code prohibit the take,

possession, or destruction of birds, their nests or eggs. Implementation of the take provisions requires that Property-related disturbance at active nesting territories be reduced or eliminated during critical phases of the nesting cycle (March 1 – August 15, annually). Disturbance that causes nest abandonment and/or loss of reproductive effort (e.g., killing or abandonment of eggs or young) or the loss of habitat upon which the birds depend is considered "taking" and is potentially punishable by fines and/or imprisonment. Such taking would also violate federal law protecting migratory birds (e.g., MBTA).

4.1.4 The Federal Bald and Golden Eagle Protection Act

Although protected by the Migratory Bird Treaty Act, both the bald eagle and the golden eagle are also protected by the Bald and Golden Eagle Protection Act of 1940 (16 U.S.C. 668-668c). The Bald and Golden Eagle Protection Act, and amended several times since being enacted in 1940, prohibits anyone, without a permit issued by the Secretary of the Interior, from "taking" bald or golden eagles, including their parts, nests, or eggs (USFWS 2010). The Act provides criminal penalties for persons who "take, possess, sell, purchase, barter, offer to sell, purchase or barter, transport, export or import, at any time or any manner, any bald eagle ... [or any golden eagle], alive or dead, or any part, nest, or egg thereof." The Act defines "take" as "pursue, shoot, shoot at, poison, wound, kill, capture, trap, collect, molest or disturb" (USFWS 2010).

For purposes of these guidelines, "disturb" means: "to agitate or bother a bald or golden eagle to a degree that causes, or is likely to cause, based on the best scientific information available, 1) injury to an eagle, 2) a decrease in its productivity, by substantially interfering with normal breeding, feeding, or sheltering behavior, or 3) nest abandonment, by substantially interfering with normal breeding, feeding, or sheltering behavior" (USFWS 2010).

In addition to immediate impacts, this definition also covers impacts that result from human-induced alterations initiated around a previously used nest site during a time when eagles are not present, if, upon the eagle's return, such alterations agitate or bother an eagle to a degree that interferes with or interrupts normal breeding, feeding, or sheltering habits, and causes injury, death or nest abandonment (USFWS 2010).

4.2 State Regulatory Setting

4.2.1 Plants and Wildlife

Property permitting and approval requires compliance with California Environmental Quality Act (CEQA), the 1984 California Endangered Species Act (CESA), and the 1977 Native Plant Protection Act (NPPA). The CESA and NPPA authorize the California Fish and Game Commission to designate Endangered, Threatened and Rare species and to regulate the taking of these species (§§2050-2098, Fish & Game Code). The California Code of Regulations (Title 14, §670.5) lists animal species considered Endangered or Threatened by the State.

The Natural Heritage Division of the California Department of Fish and Game (CDFG) administers the state rare species program. The CDFG maintains lists of designated Endangered, Threatened,

and Rare plant and animal species (CDFG, 2009a and 2009b). Listed species either were designated under the NPPA or designated by the Fish and Game Commission. In addition to recognizing three levels of endangerment, the CDFG can afford interim protection to candidate species while they are being reviewed by the Fish and Game Commission.

The CDFG also maintains a list of animal species of special concern (CDFG 2009), most of which are species whose breeding populations in California may face extirpation. Although these species have no legal status, the CDFG recommends considering them during analysis of proposed property impacts to protect declining populations and avoid the need to list them as endangered in the future.

Under provisions of §15380(d) of the CEQA Guidelines, the Property lead agency and CDFG, in making a determination of significance, must treat non-listed plant and animal species as equivalent to listed species if such species satisfy the minimum biological criteria for listing. In general, the CDFG considers plant species on List 1A (Plants Presumed Extinct in California), List 1B (Plants Rare, Threatened, or Endangered in California and elsewhere), or List 2 (Plants Rare, Threatened, or Endangered in California, But More Common Elsewhere) of the California Native Plant Society's (CNPS) *Inventory of Rare and Endangered Vascular Plants of California* (Skinner and Pavlik 1994) as qualifying for legal protection under §15380(d). Species on CNPS List 3 or 4 may, but generally do not, qualify for protection under this provision.

Sensitive habitats include riparian corridors, wetlands, habitats for legally protected species and CDFG Species of Special Concern, areas of high biological diversity, areas providing important wildlife habitat, and unusual or regionally restricted habitat types. Habitat types considered sensitive include those listed on the California Natural Diversity Data Base's (CNDDB) working list of "high priority" habitats (i.e., those habitats that are rare or endangered within the borders of California) (Holland, 1986).

4.2.2 Wetlands/Waters

The Regional Water Quality Control Board (RWQCB) regulates activities in wetlands and other waters through §401 of the Clean Water Act. Section 401 requires a state water quality certification for properties subject to 404 regulation. Requirements of the certification include mitigation for loss of wetland habitat. In the San Francisco Bay region, the RWQCB may take the lead over the Corps in determining wetland mitigation requirements. California Fish and Game Code §§1600-1607 require the CDFG be notified of any activity that could affect the bank or bed of any stream that has value to fish and wildlife. Upon notification, the CDFG has the discretion to execute a Streambed Alteration Agreement. The CDFG defines streams as follows:

"... a body of water that flows at least periodically...through a bed or channel having banks and supporting fish and other aquatic life. This includes watercourses having a subsurface flow that supports or has supported riparian vegetation." (Stream Bed Alteration Program, California Department of Fish and Game). In practice, CDFG authority is extended to any "blue line" stream shown on a USGS topographic map, as well as unmapped channels with a definable bank and bed. Wetlands, as defined by the Corps, need not be present for CDFG to exert authority.

4.2.3 California Environmental Quality Act

According to Appendix G of the California Environmental Quality Act (CEQA 2005) Guidelines, the proposed project would have a significant impact on biological resources if it would:

- a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?
- b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?
- c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?
- d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?
- e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?
- f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

5.0 METHODS OF ANALYSIS FOR GENERAL BIOLOGICAL RESOURCES

A special-status plant and wildlife species database search and review was conducted using the CNDDB and other sources. An additional search was conducted for special-status plants using California Native Plant Society Inventory on-line (CNPS). Special-status species reports were accessed by searching the CNDDB database for the Hayward, Dublin, Niles and Newark USGS 7.5 minute quadrangles, which surround the Property, and by examining those species that have been identified in the vicinity of the Property. The database report identified special-status species known to occur in the region or those that have the potential to occur in the vicinity of the Property. The CNDDB report was used to focus special-status species analysis of the site prior to the reconnaissance surveys.

An Olberding Environmental biologist conducted a reconnaissance-level survey of the Property on May 18, 2010. The survey consisted of walking throughout the Property and evaluating the site and adjacent lands for potential biological resources. Existing conditions, observed plants and wildlife, adjacent land use, soils and potential biological resource constraints were recorded during the visit.

Plant and wildlife species observed within and adjacent to the Property during the reconnaissance survey are included in Attachment 2, Table 1.

The objectives of the field surveys were to determine the potential presence or absence of specialstatus species habitat listed in the CNDDB database report and to identify any wetland areas that could be potentially regulated by the Corps (CNDDB 2010). In addition, the Olberding Environmental biologist looked for other potential sensitive species or habitats, which may not have been obvious from background database reports or research. Surveys conducted after the growing season or conducted outside of the specific flowering period for a special-status plant cannot conclusively determine the presence or absence of such plant species; therefore, site conditions and habitat type were used to determine potential for occurrence. When suitable habitat was observed to support a special-status plant or animal species it was noted in the discussion for that particular species. Regulatory agencies evaluate the possibility of occurrence based on habitats observed onsite and the degree of connectivity with other special-status plant or animal section. Potential for occurrence of each special-status or protected plant and animal species was evaluated using the following criteria.

- **Present**: The species has been recorded by CNDDB or other literature as occurring on the Property and/or was observed on the Property during the reconnaissance survey or protocol surveys.
- May Occur: The species has been recorded by CNDDB or other literature as occurring within five miles of the Property, and/or was observed within five miles of the Property, and/or suitable habitat for the species is present on the Property or its immediate vicinity.
- Not Likely to Occur: The species has historically occurred on or within five miles of the Property, but has no current records. The species occurs within five miles of the Property but only marginally suitable habitat conditions are present. The Property is likely to be used only as incidental foraging habitat or as an occasional migratory corridor.
- **Presumed Absent**: The species will not occur on the Property due to the absence of suitable habitat conditions, and/or the lack of current occurrences. Alternatively if directed or protocol-level surveys were done during the proper occurrence period and the species was not found it will be presumed absent.

Sources consulted for agency status information include USFWS (2009a, 2009b) for federally listed species and CDFG (2009a) for State of California listed species. Based on information from the above sources, Olberding Environmental developed a target list of special-status plants and animals with the potential to occur within or in the vicinity of the Property (Attachment 2, Table 2).

5.1 Soils Evaluation

The soils present on a property may determine if habitat on the site is suitable for certain specialstatus plants and animals. The host plants of some special-status invertebrates may also require specific soil conditions. In the absence of suitable soil conditions, special-status plants or animals requiring those conditions would be presumed absent. Information regarding soil characteristics for the Property was obtained by viewing the Natural Resources Conservation Service (NRCS) Web Soil Survey report for the Property (NRCS 2010).

5.2 Plant Survey Methods

The purposes of the botanical surveys were (1) To characterize the habitat types (plant communities) of the study area; (2) to determine whether any suitable habitat for any special-status plant species, occurs within the study area; and (3) to determine whether any sensitive habitat types (wetlands) occur within the study area. Site conditions and plant habitat surveys are important tools in determining the potential occurrence of plants not recorded during surveys (e.g., special-status plants) because presence cannot conclusively be determined if field surveys are conducted after the growing season or conducted outside a specific flowering period.

5.2.1 Review of Literature and Data Sources

Olberding Environmental conducted focused surveys of literature and special-status species databases in order to identify special-status plant species and sensitive habitat types with potential to occur in the study area. Sources reviewed include: CNDDB occurrence records (CNDDB 2010) and CNPS *Inventory* (Skinner and Pavlik 1994) for the Hayward, Dublin, Niles and Newark USGS 7.5 quadrangles; and standard flora (Hickman 1993). From the above sources, a list of special-status plant species with potential to occur in the Property vicinity was developed (Attachment 2, Table 2).

5.2.2 Field Surveys

A biologist from Olberding Environmental conducted a reconnaissance-level survey to determine habitat types and the potential for special-status plants based on the observed habitat types. All vascular plant species that were identifiable at the time of the survey were recorded and identified using keys and descriptions in Hickman (1993).

The habitat types occurring on the Property were characterized according to pre-established categories. In classifying the habitat types on the site, the generalized plant community classification schemes of *A Manual of California Vegetation* (Sawyer and Keeler-Wolf 1995) were consulted. The final classification and characterization of the habitat types of the study area were based on field observations.

5.3 Wildlife Survey Methods

The purposes of the wildlife surveys were to identify special-status wildlife species and/or potential special-status wildlife habitats within the study area.

5.3.1 Review of Literature and Data Sources

A focused review of literature and data sources was conducted in order to determine which specialstatus wildlife species had potential to occur in the vicinity of the Property. Current agency status information was obtained from USFWS (2009b, c) for species listed as Threatened or Endangered, as well as Proposed and Candidate species for listing, under the federal ESA; and from CDFG (2009, 2009b) for species listed as Threatened or Endangered by the state of California under the CESA, or listed as "species of special concern" by CDFG. From the above sources, a list of special-status wildlife species with potential to occur in the Property vicinity was developed (Attachment 2, Table 2).

5.3.2 Field Surveys

<u>General Wildlife Survey</u> – An Olberding Environmental biologist conducted a survey of species habitat within the entire study area, including visible portions of the adjacent properties, on May 18, 2010. The purpose of the habitat survey was to evaluate wildlife habitats and the potential for any protected species to occur on or adjacent to the Property.

<u>Reconnaissance-Level Raptor Survey</u> – A reconnaissance-level raptor survey was conducted in the Property on May 18, 2010. Observation points were established on the periphery of the site to view raptor activity over a fifteen to thirty-minute time period. This survey was conducted with the use of binoculars and notes were taken for each species occurrence. Additionally, utility poles and perch sites in the vicinity of the Property were observed. All raptor activity within and adjacent to the Property was recorded during the reconnaissance-level observation period.

<u>Reconnaissance-Level Burrowing Owl (Athene cunicularia) Survey</u> – Reconnaissance-level burrowing owl (*Athene cunicularia***) surveys were also conducted in the Property on May 18, 2010 to identify potential burrow sites or burrowing owl use of on-site habitat. The general presence and density of suitable burrow sites (e.g., rodent burrows) was evaluated for the Property. Rodent burrows encountered during the site visit were investigated for presence of potential burrowing owl residence. Each potential burrow observed was evaluated for the presence of castings, whitewash, bones, feathers or other signs of burrowing owl habitation. Observations were recorded. Utility poles and any potential perching sites were investigated for signs of castings at the base of the posts.</u>**

6.0 RESULTS FOR GENERAL BIOLOGICAL RESOURCES

The search and review of the CNDDB database reports revealed the occurrence of special-status plant and wildlife species that occur in the habitats found within the Property boundaries (CNDDB 2010). The CNDDB database and background data were reviewed for the Hayward, Dublin, Niles and Newark 7.5 minute quadrangles (Attachment 2, Table 2). Those animals listed in Attachment 2, Table 2 were reviewed for their potential to occur on the Property based on general habitat types. Most of the plant and several of the animal species identified by the CNDDB in the quadrangles require a specific habitat microclimate that was found not to occur within the Property.

6.1 Soil Evaluation Results

The NRCS (2010) reports two soil type within the Property. A detailed map of this soil type can be found in Attachment 1, Figure 8. The soils mapped included the following type:

122: Los Osos-Millsholm complex, 9 to 30 percent slopes – The Millsholm series consists of shallow, well drained soils that formed in material weathered from sandstone, mudstone and shale. Millsholm soils are on hills and mountains and have slopes of 5 to 75 percent. The mean annual precipitation is about 25 inches and the mean annual temperature is about 60 degrees F.

A1--0 to 0.5 inches; pale brown (10YR 6/3) light clay loam, brown (10YR 4/3) moist; weak medium platy structure; slightly hard, friable, nonsticky and nonplastic; common fine roots; common fine pores; slightly acid; abrupt smooth boundary. (0 to 1 inch thick)

A2--0.5 to 6 inches; brown (10YR 5/3) clay loam, brown (10YR 4/3) moist; moderate coarse subangular blocky structure; hard, friable, moderately sticky and nonplastic; common fine roots; common fine pores; few shale fragments; neutral; clear smooth boundary. (4 to 10 inches thick)

Bt--6 to 16 inches; brown (10YR 5/3) clay loam, brown (10YR 4/3) moist; moderate coarse subangular blocky structure; hard, friable, moderately sticky and slightly plastic; few fine, many medium and coarse roots; common medium and fine pores; few thin discontinuous clay films; few shale fragments; neutral; clear wavy boundary. (4 to 10 inches thick)

R--16 to 20 inches; brown and grayish brown fractured shale and fine-grained sandstone.

123: Los Osos-Millsholm complex, 30 to 50 percent slopes - The Los Osos series consists of moderately deep, well drained soils that formed in material weathered from sandstone and shale. Los Osos soils are on uplands and have slopes of 5 to 75 percent. The mean annual precipitation is about 25 inches and the mean annual air temperature is about 60 degrees F.

A--0 to 14 inches; brown (10YR 5/3) loam, very dark grayish brown (10YR 3/2) moist; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine roots; many very fine tubular pores; moderately acid (pH 6.0); clear smooth boundary. (10 to 16 inches thick)

Btss1--14 to 24 inches; yellowish brown (10YR 5/4) clay, dark yellowish brown (10YR 4/4) moist; weak medium prismatic structure; very hard, very firm, sticky and plastic; few very fine roots; few very fine tubular pores; many moderately thick clay films on faces of peds and lining pores; few slickensides; moderately acid (pH 6.0); gradual wavy boundary. (6 to 12 inches thick)

Btss2--24 to 32 inches; light yellowish brown (10YR 6/4) clay loam, dark yellowish brown (10YR 4/4) moist; massive; very hard, very firm, sticky and plastic; few very fine roots, common very fine tubular pores; many moderately thick clay films lining pores; few slickensides; few manganese concretions; slightly acid (pH 6.5); gradual wavy boundary. (4 to 8 inches thick)

C--32 to 39 inches; pale yellow (2.5Y 7/4) sandy loam, light olive brown (2.5Y 5/4) moist; massive; hard, friable, nonsticky and nonplastic; few manganese stains; neutral (pH 7.0); gradual wavy boundary. (0 to 7 inches thick)

Cr--39 to 43 inches; yellowish brown (10YR 5/4) sandstone, brown (10YR 4/3) moist; many moderately thick clay films and few manganese stains coat fracture faces that are less than 10cm apart and less than 1mm in width.

6.2 Plant Survey Results

6.2.1 Floristic Inventory and Habitat Characterization

In classifying the habitat types on the Property, generalized plant community classification schemes were used (Sawyer and Keeler-Wolf 1995). The final classification and characterization of the habitat types of the study area were based on field observations.

The Property supports three habitat types that consist of non-native grazed annual grassland, drainage ditch and potential seasonal wetland. These habitat types are described in further detail below. A description of the plant species present within these habitat types is provided below. Dominant plant species are noted. A complete list of plant species observed on the Property can be found in Attachment 2, Table 1.

Non-Native Grazed Annual Grassland Habitat

The grassland habitat on the Property is characterized by dominant grass and forb species such as wild oat (*Avena fatua*), foxtail (*Hordeum murinum var. leporinum*), Italian rye grass (*Lolium multiflorum*), soft chess (*Bromus hordeaceous*) and rip gut brome (*Bromus diandrus*). The entirety of the site is currently being grazed.

Drainage Ditch

A small constructed drainage ditch exists along the western Property fence line near Fairview Avenue. This ditch exhibits scouring and is an incised channel feature. The ditch carries water from the hillside slopes to the north south where it flattens out prior to reaching Fairview Avenue.

Potential Seasonal Wetland

Several small areas of potentially seasonal wetland habitat were observed on the Property. These areas contained standing water and vegetation consisted of Italian rye grass (*Lolium multiflorum*) and rabbit's foot grass (*Polypogon monspeliensis*). These areas were located in slight depressions in the topography where due to recent storm events, water has ponded and has formed wetland conditions. One feature is located near the eastern boundary and a second is located near the western boundary. A potential wetland seep is also located on the northern facing hillside slope.

6.2.2 Special-Status Plant Species

Special-status plant species include species listed as Rare, Threatened, or Endangered by the USFWS (2009a) or by the State of California (CDFG 2009a). Federal Proposed and Candidate species (USFWS, 2009b) are also special-status species. Special-status species also include species listed on List 1A, List 1B, or List 2 of the CNPS Inventory (Skinner and Pavlik, 1994; CNPS 2009). All species in the above categories fall under state regulatory authority under the provisions of CEQA, and may also fall under federal regulatory authority. Considered special-status species are species included on List 3 (Plants About Which We Need More Information—A Review List) or List 4 (Plants of Limited Distribution—A Watch List) of the CNPS *Inventory*. These species are considered to be of lower sensitivity and generally do not fall under specific state or federal regulatory authority. Specific mitigation considerations are not generally required for List 3 and List 4 species.

Attachment 2, Table 2 includes a list of special-status plants with the potential to occur within or in the immediate vicinity of the Property based on a review of the USGS 7.5 minute quadrangles for Hayward, Dublin, Niles and Newark. The special-status plant species identified by the CNDDB as potentially occurring on the Property are known to grow only from specific habitat types. The specific habitats or "micro-climate" necessary for many of the plant species to occur are not found within the boundaries of the Property. The habitats necessary for the CNDDB reported plant species consist of valley and foothill grassland, cismontane woodlands, chaparral, playas, chenopod scrub, adobe clay soils, alkaline soils, serpentine soils, sandy soils, gravelly soils, coastal prairie, coastal scrub, coastal dunes, coastal bluff scrub, coastal salt marsh, vernal pools, seeps, meadows and sinks, marshes or swamps, riparian woodlands, on slopes near drainages, closed cone coniferous forest, north coast coniferous forest, redwood forest, lower montane coniferous forest, and broadleafed upland forest.

Occurrences of special-status plants within a five-mile radius of the point roughly representing the center of the Property are described in detail. Occurrence distance from the Property is estimated from this center point (Attachment 1, Figure 6).

Big-Scale Balsamroot (Balsamorhiza macrolepis var. macrolepis). CNPS List 1B.

Bigscale balsamroot is an annual herb in the *Asteraceae* (Sunflower) family. The stems are finely hairy with whitish to pale green leaves. This species is found in chaparral, cismontane woodland, open grassy slopes, and valley and foothill grassland habitats often in serpentinite outcrops, generally under 4,600 feet in elevation. It's yellow flowers bloom from March through June. This plant can be found in the Sierra Nevada Foothills, Sacramento Valley, San Francisco Bay Area.

This plant was most recently observed in 1997 approximately 4.5 miles northwest of the Property. This plant was not observed during the May 2010 survey and is presumed absent from the Property.

Most Beautiful Jewel-Flower (Streptanthus albidus ssp. peramoenus). CNPS List 1B.

Most beautiful jewel-flower is an annual herb in the family *Brassiaceae*, the mustard family. This species is known from observations in Alameda, Contra Costa, Monterey, Santa Clara, and

Stanislaus Counties. It occurs in chaparral, cismontane woodlands, and in valley and foothill grasslands in serpentine soils and its purple flowers bloom between April and June.

This plant was most recently observed in 2003, approximately 2.5 miles south of the Property. This plant was not observed during the May 2010 survey and is presumed absent from the Property.

6.3 Wildlife Survey Results

6.3.1 General Wildlife Species and Habitats

A complete list of wildlife species observed within the Property can be found in Attachment 2, Table 1. Wildlife species commonly occurring within habitat types present on the Property are discussed below:

Non-Native Annual Grassland Habitat

Seeds and vegetation provided by the annual grassland habitat provide an abundance of foraging opportunities for a variety of animals. Mammals that might be expected to occur in this habitat include western gray squirrel (*Sciurus griseus*), black-tailed deer (*Lepus californicus*), and black-tailed jackrabbit (*Lepus californicus*)California vole (*Microtus californicus*), striped skunk (*Mephitis mephitis*), and opossum (*Didelphis virginiana*). Reptiles such as the gopher snake (*Pituophis melanoleuces*) and common garter snake (*Thamnophis sirtalis*) may be present. The western fence lizard (*Scelsporus occidentalis*) was observed along the edges of the Property.

A variety of bird species including black phoebe (Sayornis nigricans), house finch (Carpodacus mexicanus), house sparrow (Passer domesticus), mourning dove (Zenaida macroura), western scrub-jay (Aphelocoma californica), and Brewer's blackbird (Spizella breweri) were observed during the survey. Aerial foragers, including red-tailed hawk (Buteo jamaicensis), turkey vulture (Cathartes aura), and American crow (Corvus brachrhynchos) were also observed.

6.3.2 Special-Status Wildlife Species

Attachment 2, Table 2 includes a list of special-status wildlife species with potential to occur on the Property. Special-status wildlife species include species listed as Rare, Threatened, or Endangered by the USFWS (2009b & 2009c), as well as those species covered by the MBTA, or those species given special protection by the State of California (CDFG 2009b).

The search and review of the CNDDB database reports revealed the occurrence of special-status species that could potentially occur in the non-native annual grassland habitat on the Property. In addition, several state-protected raptors could forage and potentially nest within and adjacent to the Property. Attachment 2, Table 2 provides a summary of the species, their status, and habitat requirements. For the analysis of the site, the following specific discussions on the special-status wildlife included the following species (Attachment 1, Figure 5):

AMPHIBIANS

California Tiger Salamander (Ambystoma californiense). Federally Threatened, State Threatened.

Adult California tiger salamanders (CTS) inhabit rolling grassland and oak savannah. Adults spend most of the year in subterranean retreats such as rodent burrows, but may be found on the surface during dispersal to and from breeding sites. The preferred breeding sites are vernal pools and other temporary ponds. However, CTS may use permanent manmade ponds as breeding habitat. CTS adults begin migrating to ponds after the first heavy rains of fall and can be found in or around the breeding ponds during and after winter rainstorm events. In extremely dry years, CTS may not reproduce.

After mating, females lay several small clusters of eggs, which contain from one to over 100 eggs. The eggs are deposited on both emergent and submerged vegetation, as well as submerged detritus. A minimum of ten weeks is required to complete larval development through metamorphosis, at which time the larvae will normally weigh about ten grams. Larvae remaining in pools for a longer time period can grow to much larger sizes. Upon metamorphosis, juvenile CTS migrate in large masses at night from the drying breeding sites to refuge sites. Prior to this migration, the juveniles spend anywhere from a few hours to a few days near the pond margin. Adult CTS are largely opportunistic feeders, preying upon arthropod and annelid species that occur in burrow systems, as well as aquatic invertebrates found within seasonal pools. The larvae feed on aquatic invertebrates and insects, showing a distinct preference for larvae of the Pacific tree frog.

On August 4, 2004, the U.S. Fish and Wildlife Service (USFWS) announced the listing of the CTS as threatened throughout its range with the exception of the Sonoma and Santa Barbara County populations which are listed as endangered (USFWS 2006). On August 23, 2005, the Service designated 199,109 acres of critical habitat in 19 counties for the central California population of the CTS. On August 2, 2005, they proposed 74,223 acres of critical habitat for CTS in Sonoma County, California. This habitat is located in the Santa Rosa Plain in central Sonoma and includes lands bordered on the west by Laguna de Santa Rosa, to the south by Skillman Road, northwest of Petaluma, to the east by foothills, and to the north by Windsor Creek. On December 14, 2005, in a final decision, USFWS designated and excluded 17,418 acres of critical habitat for CTS, so that no critical habitat is being designated for the Sonoma County population.

No occurrences of this species have been made within a five-mile vicinity of the site within the last ten years (Attachment 1, Figure 5). Suitable habitat does not occur on the Property to support this species as the small ponded areas observed contained from 1-3 inches of water. Vernal pools or other temporary breeding ponds do not occur on the Property. Due to these factors, CTS is presumed absent from the Property.

<u>California Red-Legged Frog (Rana draytonii)</u>. Federally Threatened, California Species of <u>Special Concern.</u>

California red-legged frog (CRLF) was listed as a Federal threatened species on May 31, 1996 (61 FR 25813) and is considered threatened throughout its range. If a proposed property may jeopardize listed species, Section 7 of the ESA requires consideration of those species through formal consultations with the USFWS. Federal Proposed species (USFWS, 2006c) are species for which a proposed listing as Threatened or Endangered under the ESA has been published in the Federal Register. If a proposed property may jeopardize proposed species, Section 7 of the ESA affords consideration of those species through informal conferences with USFWS. On April 13, 2006, USFWS designated critical habitat for the CRLF. In total, approximately 450,288 acres fall within the boundaries of critical habitat designation.

The CRLF is found in lowlands, foothill woodland and grasslands, near marshes, lakes, ponds or other water sources. CRLF require dense shrubby or emergent vegetation closely associated with deep still or slow moving water. Generally CRLF favor intermittent streams with water at least two and a half feet deep and where the shoreline has relatively intact emergent or shoreline vegetation. CRLF is known from streams with relatively low gradients and those waters where introduced fish and bullfrogs are absent. CRLF are known to take refuge upland in small mammal burrows during periods of high water flow. CRLF occurs west of the Sierra Nevada-Cascade and in the Coast Ranges along the entire length of the state.

Several occurrences of this species have been made within the vicinity of the site within the last ten years (Attachment 1, Figure 5). However, despite these recent occurrences, suitable habitat does not occur on the Property to support this species. Permanent, deep breeding ponds or slow moving creeks do not occur on the Property. Other potential breeding habitat was not observed in the vicinity of the Property based on aerial photograph interpretation. In addition, no ground squirrel burrows were observed during the survey that would serve as aestivation habitat for this species. Due to these factors, CRLF is presumed absent from the Property.

REPTILES

Alameda Whipsnake (Masticophis lateralis euryxanthus). Federally Threatened, State Threatened.

The Alameda whipsnake is one of two subspecies of the California whipsnake. It is distinguished from the chaparral whipsnake (*M. l. lateralis*) by the broad orange striping on its sides. Adults reach approximately three to five feet in length and show a sooty black to dark brown back, cream colored undersides and pinkish tail. This species is typically found in chaparral, northern coastal sage scrub, and coastal sage habitats; however annual grasslands, oak woodlands, and oak savannah serve as habitat during the breeding season. Egg-laying occurs near scrub habitat on ungrazed grasslands with scattered shrub cover. The known distribution for Alameda whipsnake includes Sobrante Ridge, Oakland Hills, Mount Diablo, the Black Hills, and Wauhab Ridge.

Male and female snakes are active from April to November finding mates. During the breeding season from late March through mid-June, male snakes exhibit more movement throughout their home range, while female snakes remain sedentary from March until egg laying. Females lay a clutch of 6 to 11 eggs, usually in loose soil or under logs or rocks.

There are several listed CNDDB occurrences of the Alameda whipsnake within a five-mile radius of the Project Area within the last 10 years, but due to the sensitivity of the data, the exact location is unknown. Critical habitat for the whipsnake is also present within a 5 mile radius of the Project site. Reconnaissance level surveys of the Property revealed the presence of moderate secondary habitat for the Alameda whipsnake. Due to the unsuitable nature of the annual grassland habitat, the lack of adjacent oak woodland or coastal sage habitats, and the developed nature of the surrounding habitats, the Alameda whipsnake is presumed absent from the Project Area.

BIRDS

Cooper's Hawk (Accipiter cooperii). California Species of Special Concern, State Protected. Sharp-Shinned Hawk (Accipiter striatus). California Species of Special Concern, State Protected.

The sharp-shinned hawk is a small raptor with short, rounded wings. This hawk has a long tail that is squared-off at tip with prominent corners. This raptor typically flies with several quick, snappy wingbeats and a short glide, but also soars. Its small rounded head does not project far beyond the wings when soaring. The adult sharp-shinned hawk exhibits a red eye, black cap, and a blue-gray back and upperwings. The white breast, belly and underwing coverts are marked by fine, thin, reddish bars.

The Cooper's hawk is quite similar looking to the sharp-shinned hawk, although it is slightly larger in size and has a long rounded tail. Both hawks hunt in woodlands, riparian areas and even densely vegetated urban areas. These raptors capture small birds, rodents and reptiles. They often hunt along the edges of woodlands, shorelines, and riparian habitats where migrating passerines are found. Nesting habitat for these raptors consists of woodlands, coniferous forest, and dense oak woodland adjacent or close to open areas.

Both of these raptors could potentially hunt within the grassland habitat the Property. Potential nest trees occur at the northeast corner of the Property in the form of eucalyptus trees. Pine trees also occur adjacent to the Property where either hawk could establish a nest site.

Burrowing Owl (Athene cunicularia). Federal Species of Special Concern, California Species of Special Concern.

The U.S. Fish and Wildlife Service has identified the burrowing owl is as a "candidate" species. Candidate species are animals and plants that may warrant official listing as threatened or endangered, but there is no conclusive data to give them this protection at the present time. As a candidate species, burrowing owls receive no legal protection under the Endangered Species Act (ESA). However, this species does receive some legal protection from the U.S. through the

Migratory Bird Treaty Act, which forbids the destruction of the birds and active nests. In California, the burrowing owl considered a "species of special concern."

Burrowing owls are ground dwelling members of the owl family and are small brown to tan colored birds with bold spots and barring. Burrowing owls generally require open annual grassland habitats in which to nest, but can be found on abandoned lots, roads, airports, and other urban areas. Burrowing owls generally use abandoned California ground squirrel holes for their nesting burrow, but are also known to use pipes or other debris for nesting purposes. Burrowing owls prefer annual grassland habitats with low vegetative cover. The breeding season for burrowing owls occurs from March through August. Burrowing owls often nest in loose colonies about 100 yards apart. They lay three to twelve eggs from mid-May to early June. The female incubates the clutch for about 28 days, while the male provides her with food. The young owls begin appearing at the burrow's entrance two weeks after hatching and leave the nest to hunt for insects on their own after about 45 days. The chicks can fly well at six weeks old.

No recent occurrence of this species has occurred in the vicinity of the Property. The majority of the grassland habitat on the Property is large and free of canopy cover. However, due to the lack of small mammal burrows observed during the survey, and the tall, dense vegetation that covers the site, the Property is considered unsuitable habitat to support the burrowing owl. This species was not observed during the survey and is presumed absent from the site.

Red-Tailed Hawk (Buteo jamaicensis). State Protected.

The red-tailed hawk is a large *Buteo* that is distinct due to the red color of its tail feathers in contrast to the brown color of its body. Not all red-tailed hawks exhibit the distinct coloration on their tail and gradations may occur especially in young birds. Red-tailed hawks hunt rodents by soaring over grassland habitat. Nest trees for red-tailed hawks are usually tall trees with a well developed canopy that includes a strong branching structure on which to build a nest.

The red-tailed hawk could potentially nest within the oak trees on the southwest corner of the site or within the pine trees adjacent to the Property. It could also use these trees to perch while foraging on adjacent lands. This species was observed foraging over the Property during the May 2010 survey.

Red-Shouldered Hawk (Buteo lineatus). State Protected.

The red-shouldered hawk is a medium-sized, slender *Buteo* with long legs and a long tail and is smaller than the red-tailed hawk. Upperparts are dark with pale spotting, and rusty-reddish feathers on the wing create the distinctive shoulder patch. The tail has several wide, dark bars; the intervening narrow stripes and the tip of the tail are white, and there is variation in the number of tail bars among adults and juveniles. The habitat that the red-shouldered hawk prefers varies from bottomland hardwoods and riparian areas to upland deciduous or mixed deciduous-conifer forest, and almost always includes some form of water, such as a swamp, marsh, river, or pond. In the west, the red-shouldered hawk sometimes occurs in coniferous forests, and has been expanding its

range of occupied habitats to include various woodlands, including stands of eucalyptus trees amid urban sprawl.

The red-shouldered hawk could potentially nest within the eucalyptus trees near the northeast corner of the site or within the pine trees on the edges of the Property. It could also use these trees to perch while foraging on the Property and adjacent lands. This species was not observed during the May 2010 survey. While this species generally prefers to hunt within riparian habitats, it has also been known to forage in grasslands near these areas. For this reason, the red-shouldered hawk has the potential to occur on the Property.

White-Tailed Kite (Elanus leucurus). Federal Species of Concern, CDFG: Fully Protected.

The white-tailed kite is falcon-shaped with a long white tail. This raptor has black patches on the shoulders that are highly visible while the bird is flying or perching. White-tailed kites forage in annual grasslands, farmlands, orchards, chaparral, and at the edges of marshes and meadows. They are found nesting in trees and shrubs such as willows (*Salix* sp.), California sycamore (*Platanus racemosa*), and live oak (*Quercus agrifolia*) often near marshes, lakes, rivers, or ponds. This raptor often hovers while inspecting the ground below for prey. Annual grasslands are considered good foraging habitat for white-tailed kites, which will forage in human-impacted areas.

The white-tailed kite could potentially nest within the eucalyptus and pine trees on and adjacent to the Property. This species is also well known to forage within grasslands amid urban sprawl. This species was not observed during the May 2010 survey, but may occur.

American Kestrel (Falco sparverius). State Protected.

The American kestrel is the smallest of raptor species and is distinct due to the black barring on its face. The female kestrel is slightly larger than the male bird and is differentiated by its brown and red coloration. The male kestrel is slightly smaller than the female and has gray wing patches near the top of the wing. Kestrels utilize cavities in trees for nesting and hunt small rodents and birds.

Nesting cavities for the American kestrel were not observed within any of the trees on or adjacent to the Property. These trees could, however, be utilized by this species to perch while foraging on the Property and adjacent lands. The American kestrel is also well known to forage within grasslands amid urban sprawl. This species was not observed during the May 2010 survey, but may occur.

MAMMALS

Special-Status Bats

Bats (Order - *Chiroptera*) are the only mammals capable of "true" flight. They are nocturnal feeders and locate their prey which consists of small to medium sized insects by echolocation. Bats consume vast amounts of insects making them very effective pest control agents. They may eat as much as their weight in insects per day. Maternity roosts comprised of only females, may be found in buildings or mine shafts with temperatures up to 40 degrees Celsius and a high percentage of

humidity to ensure rapid growth in the young. Female bats give birth to only one or two young annually and roost in small or large numbers. Males may live singly or in small groups, but scientists are still unsure of the whereabouts of most males in summer.

Special-status bats with the potential to occur on the Property are listed below. Due to the lack of roosting habitat on the Property (rock crevices, caves, tree hollows, abandoned buildings, dense foliage of trees, etc.), the bats with the potential to occur on the Property would use the site for foraging purposes only.

Pallid bat (Antrozous pallidus), California Special Concern species

No recent occurrences of the pallid bat have been identified within 5 miles of the Property. Marginally suitable foraging habitats occur throughout the Property for this species. Roosting habitat does not occur on the site. Bat species are presumed absent from the Property due to the lack of recent occurrences and marginal foraging habitat.

7.0 CONCLUSIONS

7.1 Wetlands

Results of the biological resource analysis survey conducted by Olberding Environmental in May 2010 identified several areas within the Property that exhibited positive indicators of wetland soils, hydrology and vegetation. Based on the results of our reconnaissance survey, the site contained the criteria necessary for the Corps to determine wetland status. A formal delineation is required to confirm presence/absence of jurisdictional wetlands.

7.2 Special-Status Plants

Two special-status plant species has the potential to occur on the Property based on the presence of suitable habitats and soil types. These plants include big-scale balsamroot and most beautiful jewel

flower. However, neither plant was observed during the May 2010 survey which occurred during the identified booming period. Both plant species are presumed absent from the site.

7.3 Special-Status Wildlife

Special-Status Amphibians – Several occurrences of CRLF have been made within the vicinity of the site within the last ten years (Attachment 1, Figure 5). However, despite these recent occurrences, suitable habitat does not occur on the Property to support these species. Vernal pools, temporary breeding ponds, and slow moving creeks do not occur on the Property. In addition, no ground squirrel burrows were observed during the survey that would serve as aestivation habitat for either of these species. Due to these factors, both CTS and CRLF are presumed absent from the Property.

Special-Status Reptiles – Despite the marginally suitable habitat that the site provides, the Alameda whipsnake is presumed absent from the Property due to the lack of rock outcrops, small mammal burrows and sage scrub habitat. Despite recent occurrences within the vicinity of the Property, the lack of suitable habitat and the presence of heavy grazing make it unlikely that the Alameda whipsnake is present on the Property.

Foraging or Nesting Raptor Species – The habitats on and adjacent to the Property provide foraging and nesting habitat for the Cooper's hawk, sharp-shinned hawk, red-tailed hawk, red-shouldered hawk, white-tailed kite, and American kestrel. No nests were observed during the May 2010 survey, though a foraging red-tailed hawk was observed foraging over the site.

Due to the lack of small mammal burrows observed during the survey, and the tall, dense vegetation that covers the site, the Property is considered unsuitable habitat to support the burrowing owl. This species was not observed during the survey and is presumed absent from the site.

Special-Status Mammal Species –Marginally suitable foraging habitat occurs on site for bat species. Roosting habitat does not occur on the site. Bat species are presumed absent from the Property due to the lack of recent occurrences and marginal foraging habitat.

8.0 RECOMMENDATIONS

- It is recommended that a jurisdictional delineation be conducted in accordance with U.S. Army Corps of Engineers guidelines. This delineation would determine the boundaries of those features potentially qualifying as jurisdictional wetlands/waters by the Corps and/or Regional Board. If any features fall under the jurisdiction of the Corps or Regional Board, permit applications may be required prior to any site grading or fill of those qualifying features.
- Proposed activities on the Property may result in vegetation removals that could directly destroy nests, eggs, and immature birds, and would remove future nesting habitat for birds, including sensitive species such as migrating songbirds. If impacts to on-site shrubs and trees cannot be avoided, then the removal of this vegetation will occur outside of the breeding season, which is typically between January and July. A nesting bird survey 72 hours prior to the removal of vegetation and/or construction is required to determine absence or presence of nesting bird species. If the survey does not identify any nesting special-status bird species in the area potentially affected by the proposed activity, no further mitigation is required. If nest sites or young are located, a no-disturbance buffer will be established around the active nest. The biologist will consult with CDFG to determine the size of the no-disturbance buffer, which is typically between 150 to 200 feet.
- Pre-construction surveys for raptors would be necessary due to the presence of suitable nesting habitat on and directly adjacent to the Property. The eucalyptus trees, large oak and pine trees surrounding the Property should be surveyed if removal of the trees is to occur after January and prior to July. Surveys are also recommended if grading or construction

traffic is to occur within a 100-foot distance of any known nesting site. If required, surveys should be performed prior to January to identify any potential nesting trees prior to the birds lying eggs. Once eggs have been laid, a buffer of at least 150 feet must be established around the nest site and the site protected until August 15 or until the young have fledged (typically 3 to 4 weeks). A nesting raptor survey 72 hours prior to the removal of vegetation and/or construction is required to determine absence or presence of nesting raptor species.

- Grading and excavation activities could expose soil to increased rates of erosion during construction periods. During construction, runoff from the Property could adversely affect aquatic life within the adjacent water features. Surface water runoff could remove particles of fill or excavated soil from the site, or could erode soil down-gradient, if the flow were not controlled. Deposition of eroded material in adjacent water features could increase turbidity, thereby endangering aquatic life, and reducing wildlife habitat. Implementation of appropriate mitigation measures would ensure that impacts to aquatic organisms would be avoided or minimized. Mitigation measures may include best management practices (BMP's) such as hay bales, silt fencing, placement of straw mulch and hydro seeding of exposed soils after construction as identified in the Storm Water Pollution Prevention Plan (SWPPP).
- Due to the presence of suitable habitat types, soil conditions, and recent occurrences in the vicinity of the Property, two special-status plant species has been identified as having the potential to occur on the Property big-scale balsamroot and most beautiful jewel flower. It is recommended that a second survey be performed in June or next spring to validate a negative finding for these plants.

9.0 LITERATURE CITED

California Department of Fish and Game Natural Diversity Data Base, computer listings and map locations of historic and current recorded occurrences of special-status species and natural communities of special concern for USGS 7.5 minute quadrangle map: Hayward, February 2010.

CDFG 2009. California Wildlife Habitat Relationships. http://www.dfg.ca.gov/whdab/index.html

- California Department of Fish and Game. 2009. Special animals. <u>http://ww.dfg.ca.gov/endangered/</u> special_animals.html.
 - _____. 2009a. State and federally listed Endangered, Threatened, and Rare plants of California. http://www.dfg.ca.gov/endangered/t_eplnt.pdf.
 - _____. 2009b. State and federally listed Endangered and Threatened animals of California. http://www.dfg.ca.gov/endangered/t e_animal.pdf.
- California Native Plant Society (CNPS). 2010. Inventory of Rare and Endangered Plants (online edition, v6-04d1). California Native Plant Society. Sacramento, CA. Accessed on May 18, 2010 from http://www.cnps.org/inventory.
- CEQA. 2005. The California Environmental Quality Act. Appendix G, Environmental Checklist Form. Accessed April 12, 2010. Available online at http://ceres.ca.gov/ceqa/guidelines/Appendix G.html.

City of Hayward Tree Ordinance. http://www.ci.hayward.ca.us/municipal/HMCWEB/TreePreservation.pdf

- Ehrlich, P.R., D.S. Dobkin, and D. Wheye. 1988. The Birder's Handbook: a field guide to the natural history of North American birds. Simon & Schuster, Inc., New York. 785 pp.
- Hickman, J. C. (ed.). 1993. The Jepson manual: higher plants of California. University of California Press, Berkeley, CA. 1400 pp.

Holland (1986) Preliminary Description of the Natural Communities of California. CDFG.

Mayer, K. E. and Laudenslayer W.F. 1988. A Guide to Wildlife Habitats of California. California.

- Moyle P. 2002. Inland Fishes of California. Revised and Expanded. University of California Press. Berkeley and Los Angeles, California.
- Natural Resources Conservation Service (NRCS). 2010. United States Department of Agriculture. Web Soil Survey. Accessed May 18, 2010. Available on-line at http://websoilsurvey.nrcs.usda.gov.

- Nielsen J.L, K.D. Crow, and M.C. Fountain. 1999. Microsatellite diversity and conservation of a relic trout population: McCloud River redband trout. Molecular Ecology 8 (suppl. 1) S 129-142.
- Pierce, Robert J. 1995. Wetland Delineation Lecture Notes. Wetland Training Institute, Inc., Poolesville, MD. WTI 95-2. 200pp.
- Sawyer and Keler-Wolf. 1995. A Manual of California Vegetation. California Native Plant Society.
- Skinner, M. W. and B. M. Pavlik (eds.). 1994. Inventory of rare and endangered vascular plants of California. California Native Plant Society Special Publication No. 1 (5th edition). California Native Plant Society, Sacramento, CA. 338 pp.

Sibley, D.A. 2000. The Sibley Guide to Birds. Alfred Knopf, New York.

- Sibley, C.G., and B.L. Munroe, Jr. 1990. Distribution and taxonomy of birds of the world. Yale University Press, New Haven and London. 1111 pp.
- U.S. Fish and Wildlife Service, Resource Management Group, Inc. 1993. National List of Plant Species that Occur in Wetlands. Region 10-California.
- United States Fish and Wildlife Service. 2003. Interim Guidance on Site Assessment and Field Surveys for Determining Presence or a Negative Finding of the California Tiger Salamander October 2003. http://www.fws.gov/sacramento/es/documents/cts_survey_protocol.PDF.

_____. 2009a. Endangered and threatened plants. http://www.fws.gov/r9endspp/cfr1712.pdf.

2009b. Endangered and threatened wildlife and plants; review of plant and animal taxa that are Candidates or Proposed for listing as Endangered or Threatened; annual notice of findings on recycled petitions; annual description of progress on listing actions; proposed rule. Federal Register 64(205): 57534-57547.

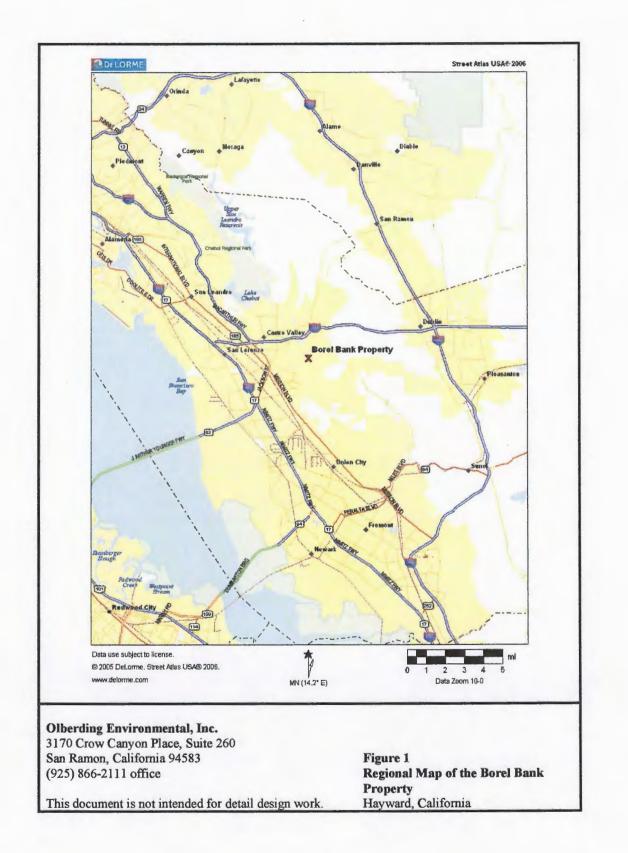
_____. 2009c. Endangered and threatened wildlife. http://www.fws.gov/r9endspp/cfr 1711.pdf.

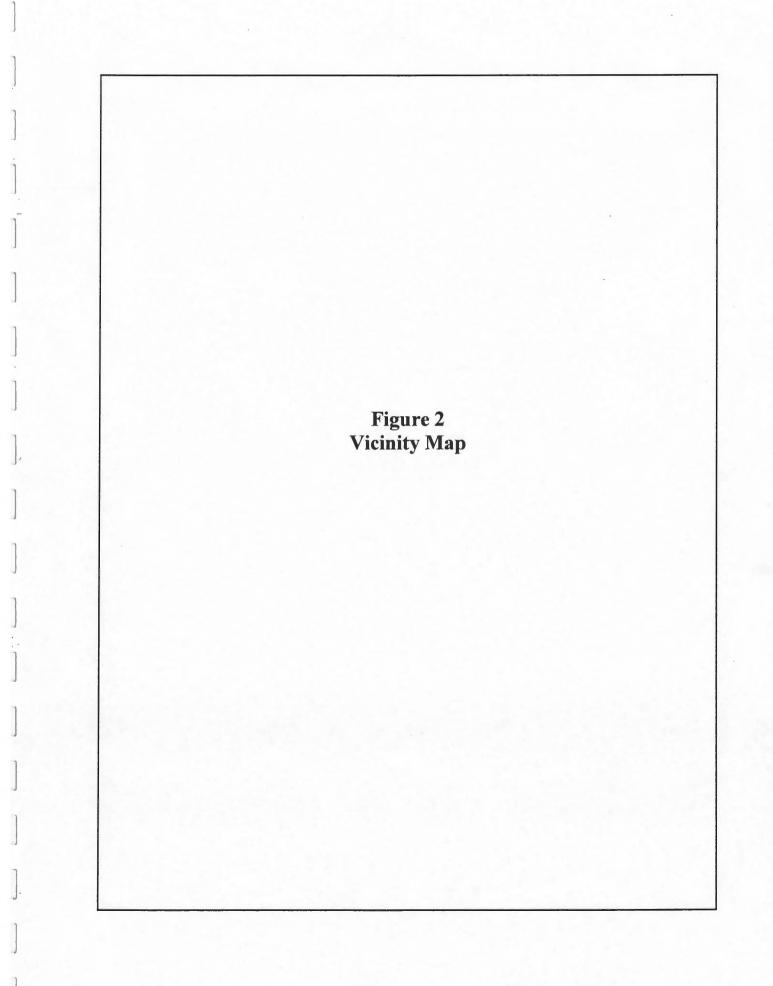
_____. 2009d. Endangered Plants. http://sacramento.fws.gov/es/plant_spp_accts/l egenere.htm.

. 2010. Bald Eagle Management Guidelines and Conservation Measures. The Bald and Golden Eagle Protection Act. Accessed on April 12, 2010. Available on-line at http://www.fws.gov/midwest/Eagle/guidelines/bgepa.html.

ATTACHMENTS

ATTACHMENT 1 FIGURES

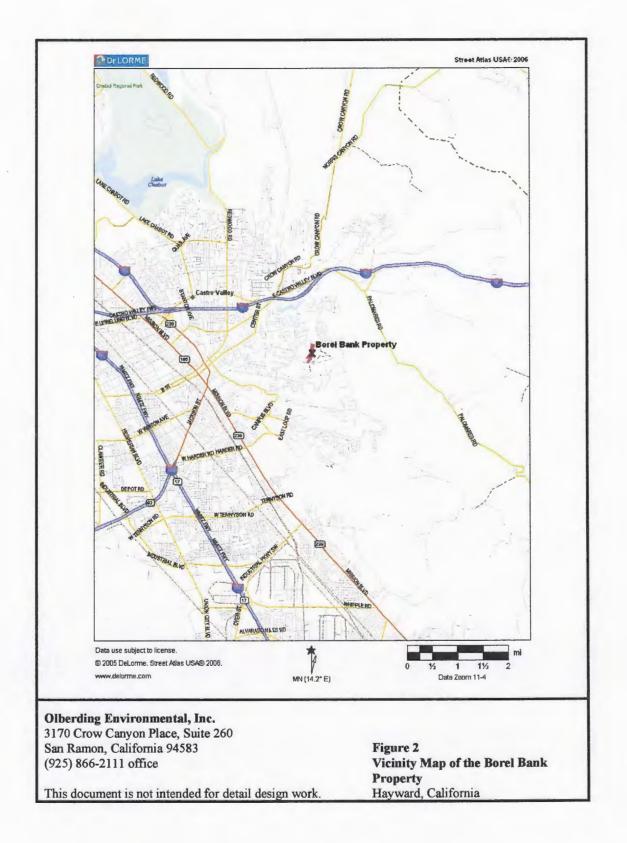
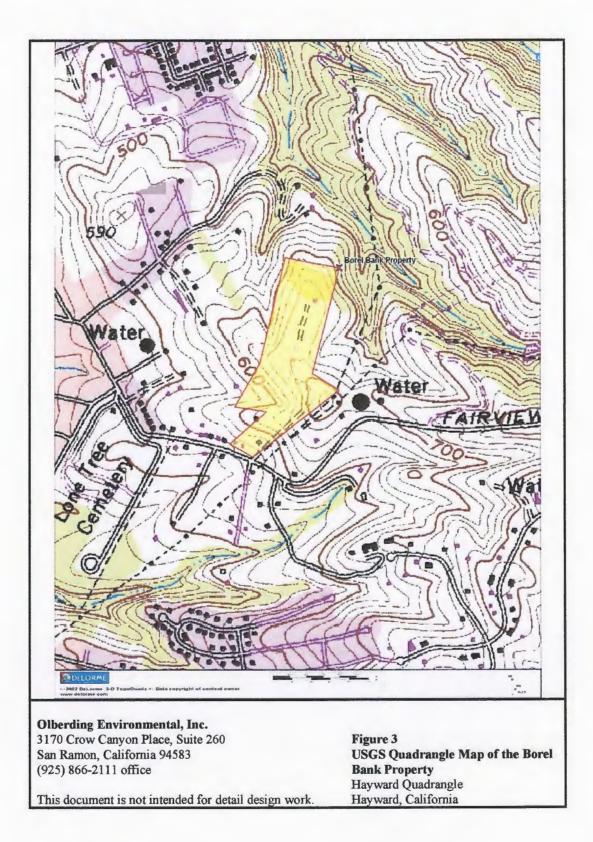
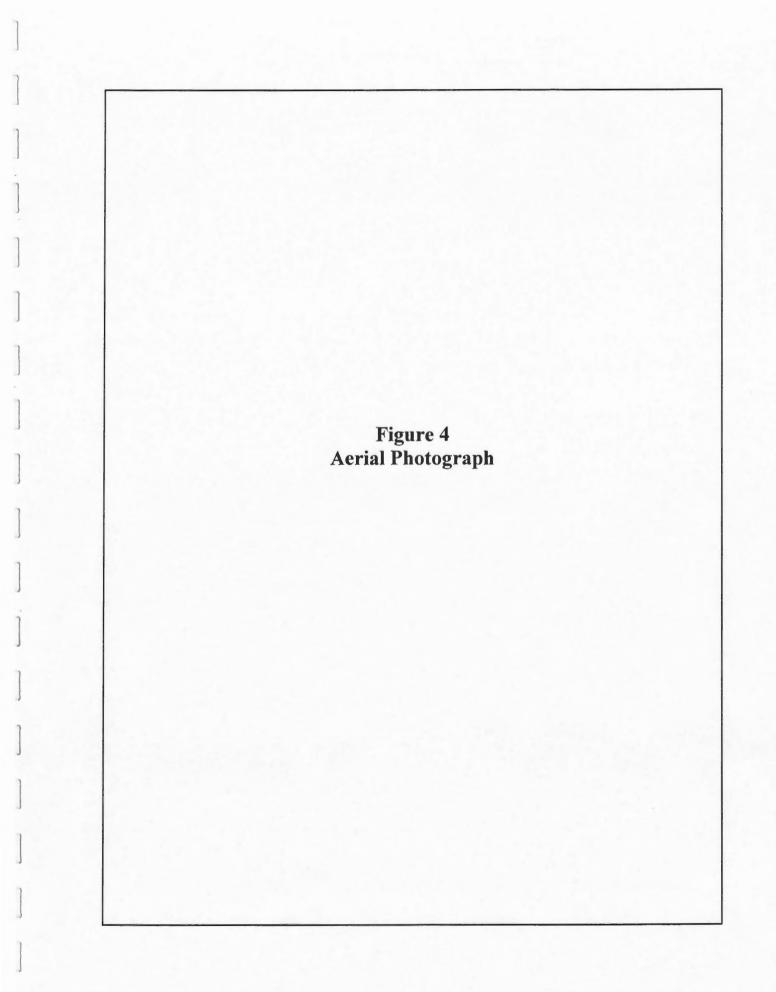
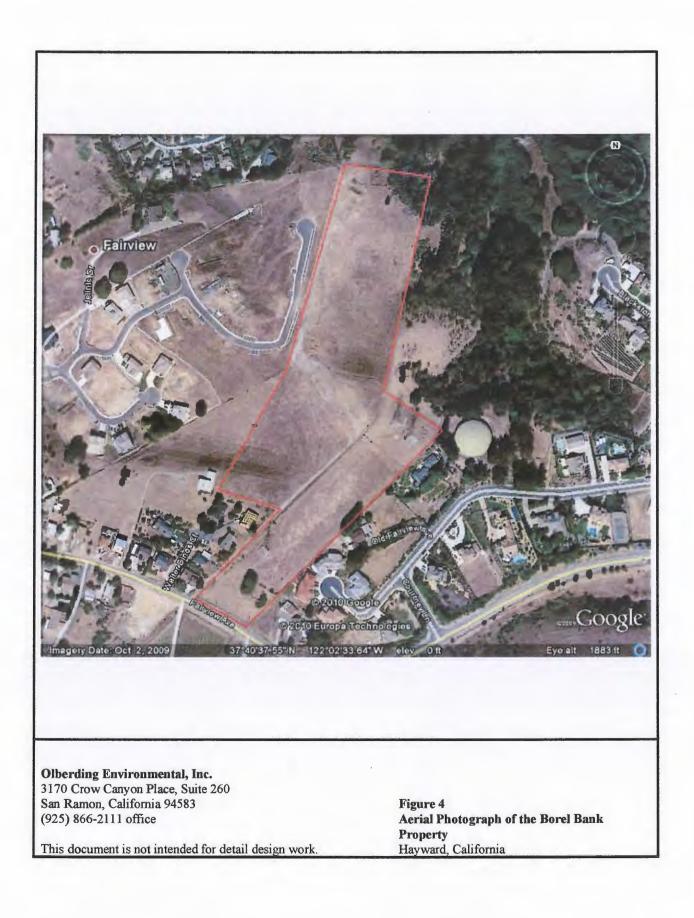
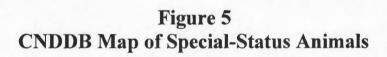

- Figure 1 Regional Map
- Figure 2 Vicinity Map
- Figure 3 USGS Quadrangle Map for Hayward

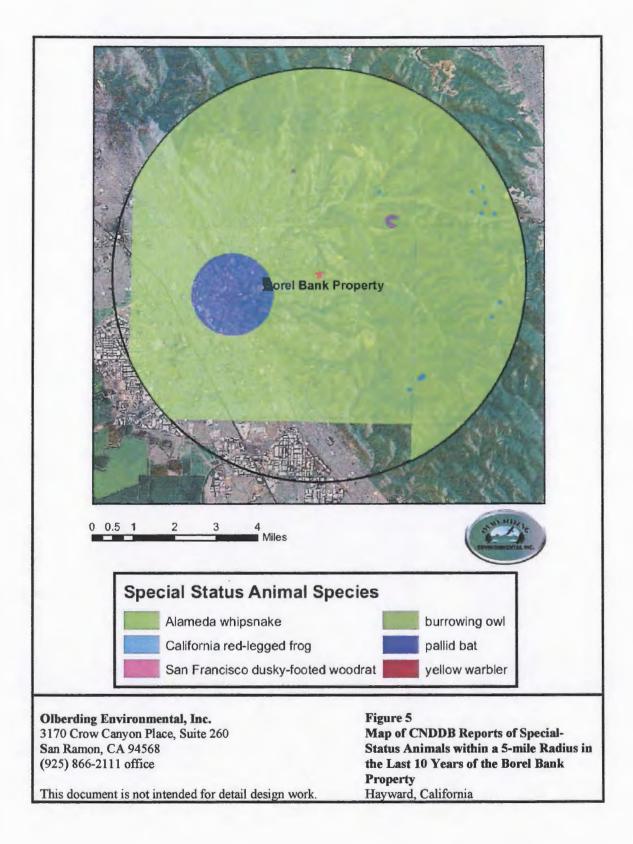

Figure 4 Aerial Photograph

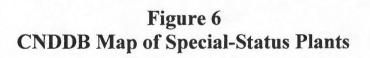
- Figure 5 CNDDB Map of Special-Status Animals
- Figure 6 CNDDB Map of Special-Status Plants
- Figure 7 USFWS Designated Critical Habitat Locations

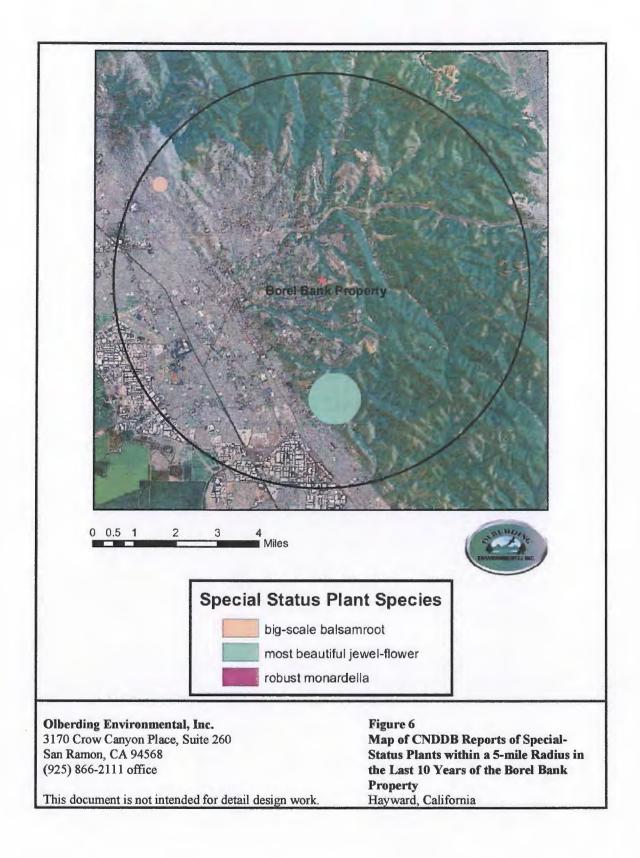
Figure 8 Soils Map

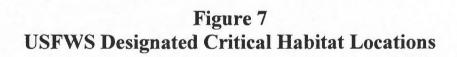
Figure 1 Regional Map

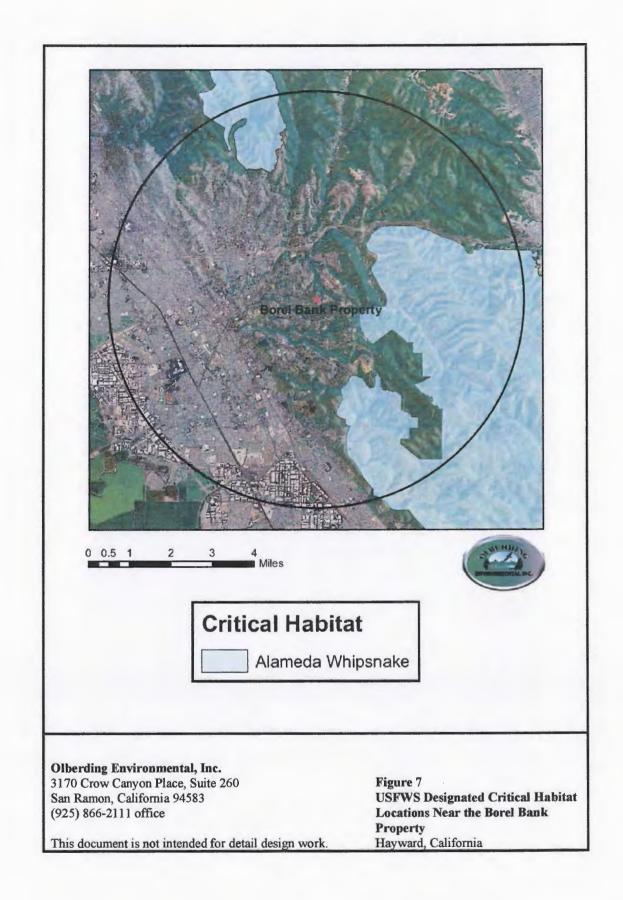






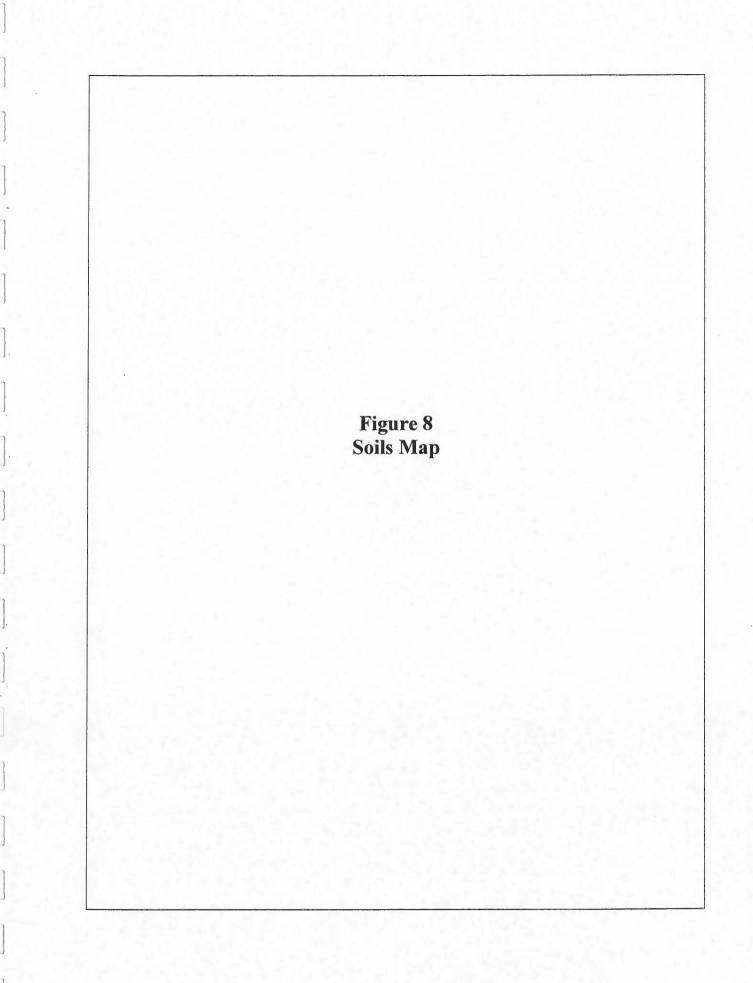

Figure 3 USGS Quadrangle Map for Morgan Hill











Santa Clara County, California		
Map Unit Symbol	Percentage within Property	Map Unit Name
122	34.8%	Los-Osos – Millsholm complex; 9-30% slopes
123	62.2%	Los-Osos – Millsholm complex; 30-50% slopes
128	3%	Millsholm silt loam; 30-50%

Olberding Environmental, Inc. 3170 Crow Canyon Place, Suite 260 San Ramon, California 94583 (925) 866-2111 office

Figure 8 Natural Resources Conservation Service Soil Series Map for the Borel Bank Property Hayward, California

This document is not intended for detail design work.

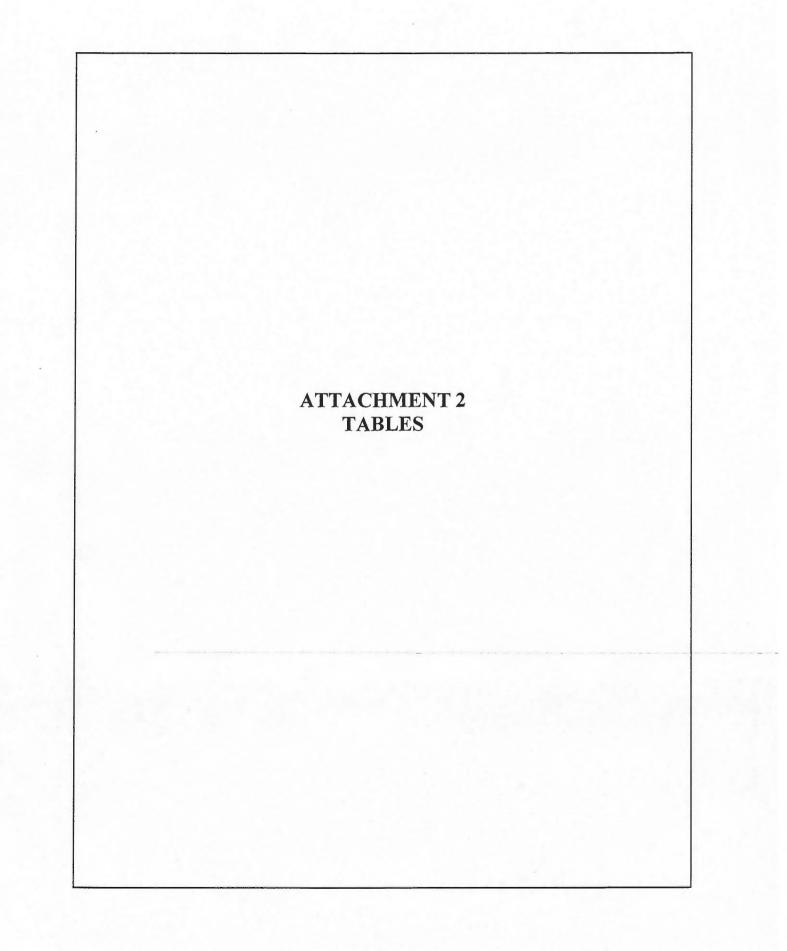


Table 1Plant and Wildlife Species ObservedWithin/Adjacent to the Survey Area

Scientific Name	Common Name
	pecies Observed
Avena fatua	Wild oat
Baccharis pilularis	Coyote brush
Brassica nigra	Black mustard
Bromus diandrus	Ripgut brome
Bromus hordeaceous	Soft chess
Bromus madritensis ssp. rubens	Red brome
Cirsium vulgare	Italian thistle
Erodium cicutarium	Red-stemmed filaree
Eucalyptus globulus	Blue-gum eucalyptus
Hordeum murinum var. leporinum	Foxtail
Lolium multiflorum	Italian rye grass
^p inus sp.	Pine trees
Plantago lanceolata	English plantain
Polypogon monspeliensis	Rabbit's foot grass
Quercus agrifolia	Coast live oak
Raphanus raphanistrum	Wild radish
Rumex crispus	Curly dock
Frifolium sp.	Clover
Vicia sativa ssp. nigra	Common vetch
	Species Observed
	Birds
Aphelocoma californica	Western scrub-jay
Ardea alba	Great egret
Suteo jamaicensis	Red-tailed hawk
Carpodacus mexicanus	House finch
Cathartes aura	Turkey vulture
Corvus brachyrhynchos	American crow
Euphagus cyanocephalus	Brewer's blackbird
Mimus polyglottos	Northern mocking bird
Passer domesticus	House sparrow
Psaltriparus minimus	Bushtit
Sayornis nigricans	Black phoebe
Furdus migratorius	American robin
Zenaida macroura	Mourning dove
I	Mammals
Bos Taurus	Domestic cow
Equus caballus	Horse
Peromyscus sp.	Field mouse
Sciurus griseus	Western gray squirrel

Table 2Special-Status Species for the Hayward, Dublin, Niles and Newark7.5 Minute Quadrangle Maps

Special-Sta	atus Species for	r the Hayward, Du	Special-Status Species for the Hayward, Dublin, Niles, and Newark 7.5 Minute Quadrangle Maps ¹							
Common Name/ Scientific Name	Status (Fed/State/ CNPS) ²	Blooming or Survey Period	Habitats of Occurrence	Potential on Site	Status on Site**					
			PLANTS							
Alkali Milk-Vetch (Astragalus tener var. tener)	-/-/1B	March – June	Playas, valley and foothill grasslands in adobe clay soils, and vernal pools in alkaline soils.	No	Presumed Absent					
San Joaquin Spearscale (Atriplex joaquiniana)	-/-/1B	April – October	Chenopod scrub, meadows and seeps, playas, valley and foothill grassland in alkaline soils.	No	Presumed Absent					
Big-Scale Balsamroot (Balsamorhiza macrolepis var. macrolepis)	-/-/1B	March – June	Chaparral, cismontane woodland, and valley and foothills grasslands, sometimes in serpentinite outcrops.	May Occur	Presumed Absent					
Chaparral Harebell (Campanula exigua)	-/-/1B	May – June	Chaparral, in rocky, usually serpentine soils.	No	Presumed Absent					
Congdon's Tarplant (Centromadia parryi ssp. congdonii)	-/-/1B	June – November	Valley and foothill grasslands in alkaline soils.	Low	Presumed Absent					
Santa Clara Red Ribbons (Clarkia concinna ssp. automixa)	-/-/4	May – June	Cismontane woodland, chaparral, on slopes and near drainages.	No	Presumed Absent					
Fragrant Fritillary (Fritillaria liliacea)	-/-/1B	February – April	Cismontane woodland, coastal prairie, coastal scrub, and valley and foothill grasslands, often in serpentine soils.	Low	Presumed Absent					
Diablo Helianthella (Helianthella castanea)	-/-/1B	March – June	Broadleafed upland forest, chaparral, cismontane woodland, coastal scrub, riparian woodland, valley and foothill grassland. Usually in chaparral/oak woodland interface in rocky, azonal soils, often in partial shade.	No	Presumed Absent					
Santa Cruz Tarplant (Holocarpha macradenia)	T/E/1B	June – October	Coastal prairie, coastal scrub, and valley and foothill grasslands, often with clay, sandy soils; often with non-natives.	No	Presumed Absent					

Special-Sta	itus Species for	the Hayward, Du	Table 2 blin, Niles, and Newark 7.5 Minute Quadra	angle Maps ¹	
Common Name/ Scientific Name	Status (Fed/State/ CNPS) ²	Blooming or Survey Period	Habitats of Occurrence	Potential on Site	Status on Site**
Contra Costa Goldfields (Lasthenia conjugens)	E/-/1B	March – June	Valley and foothill grassland, cismontane woodland, and vernal pools, swales, and low depressions in open grassy areas.	No	Presumed Absent
Hairless Popcorn-Flower (Plagiobothrys glaber)	-/-/1A	March – May	Meadows and seeps, marshes and swamps, coastal salt marshes and alkaline meadows.	No	Presumed Absent
Oregon Polemonium (Polemonium carneum)	-/-/2	April – September	Coastal prairie, coastal scrub, and lower montane coniferous forest from 0-1830 meters in elevation.	No	Presumed Absent
Slender-Leaved Pondweed (Potamogeton filiformis)	-/-/2	May – July	Assorted freshwater marshes and swamps. Shallow, clear water of lakes and drainage channels.	No	Presumed Absent
Most Beautiful Jewel-Flower (Streptanthus albidus ssp. peramoenus)	-/-/1B	April – June	Chaparral, cismontane woodland, and valley and foothill grasslands in serpentine soils on ridges and slopes.	May Occur	Presumed Absent
		INV	ERTEBRATES		
Monarch Butterfly (Danaus plexippus) WINTER ROOSTS	-/-/-	October – March	Winter roosts along coast from northern Mendocino to Baja California, Mexico. Roosts in wind-protected groves of eucalyptus, Monterey pine, and cypress with nectar and water sources nearby.	Low	Presumed Absent
California Linderiella (Linderiella occidentalis)	SOC/-/-	December – May (dependent on the timing of winter and spring rains)	Seasonal pools in unplowed grasslands with old alluvial soils underlain by hardpan or in sandstone depressions. Water in the pools has very low alkalinity and conductivity.	No	Presumed Absent
Lum's Micro-Blind Harvestman (Microcina lumi)	-/-/-	Resident	Xeric habitats in the San Francisco Bay region, beneath serpentine rocks in grassland.	No	Presumed Absent

Special-Sta	atus Species fo	r the Hayward, Du	Table 2 blin, Niles, and Newark 7.5 Minute Quadr	angle Maps ¹	
Common Name/ Scientific Name	Status (Fed/State/ CNPS) ²	Blooming or Survey Period	Habitats of Occurrence	Potential on Site	Status on Site**
Steelhead Central California Coast ESU (Oncorhynchus mykiss irideus)	T/-/SC	Spawning in spring (December to April). Fry emerge from gravel spawning beds 5 to 7 weeks later.	From Russian River, south to Soquel Creek and to, but not including Pajaro River, also San Francisco and San Pablo Bay basins. Spawning occurs in cool streams with low turbidity, and suitable sites for egg deposition.	No	Presumed Absent
		A	MPHIBIANS		
California Tiger Salamander (Ambystoma californiense)	T/T/-	Aquatic Surveys - Once each in March, April, and May with at least 10 days between surveys. Upland Surveys - 20 nights of surveying under proper conditions beginning October 15 and ending March 15.	Vernal pools, swales and depressions for breeding, needs underground refugia for hibernation.	No	Presumed Absent
California Red-Legged Frog (Rana draytonii)	T/-/SC	May 1 – November 1	Lowlands and foothills in or near permanent deep water with dense, shrubby or emergent riparian habitat. Requires 11-20 weeks of permanent water for breeding and larval development. Must have access to aestivation habitat.	Low	Presumed Absent
			REPTILES		
Western Pond Turtle (Actinemys marmorata)	-/-/SC	March – October	Aquatic turtle needs permanent water in ponds, streams, irrigation ditches. Nests on sandy banks or grassy fields.	No	Presumed Absent

Special-Sta	atus Species fo	r the Hayward, Du	Table 2 blin, Niles, and Newark 7.5 Minute Quadr	angle Maps ¹	
Common Name/ Scientific Name	Status (Fed/State/ CNPS) ²	Blooming or Survey Period	Habitats of Occurrence	Potential on Site	Status on Site**
Alameda Whipsnake (Masticophis lateralis euryxanthus)	T/T/-	Year-round resident	Valley-foothill hardwood habitat of the coast ranges between Monterey and north San Francisco Bay areas. Inhabits south-facing slopes and ravines where shrubs form a vegetative mosaic with oak trees and grasses.	Low	Presumed Absent
			BIRDS		
Cooper's Hawk (Accipiter cooperii)	-/CP/SC	February – August	Oak woodlands, coniferous forests, riparian corridors. Often hunts on edges between habitats.	Low	Not Likely to Occur
Sharp-Shinned Hawk (Accipiter striatus)	-/CP/SC	February – August	Oak woodlands, coniferous forests, riparian corridors. Often hunts on edges between habitats. (Nesting) Ponderosa pine, black oak, riparian deciduous, mixed conifer, and Jeffrey pine habitats. Prefers riparian areas. North- facing slopes with plucking perches are critical requirements. Nests usually within 275 feet of water.	Low	Not Likely to Occur
Tricolored Blackbird (Agelaius tricolor)	SOC/-/SC	February – August	Nesting within seasonal wetland marshes, blackberry brambles or other protected substrates. Forages in annual grassland and wetland habitats.	Low	Not Likely to Occur
Golden Eagle (Aquila chrysaetos)	-/CP/SC	February – August	Nests in cliff-walled canyons and tall trees in open areas. (Nesting and wintering) Rolling foothills mountain areas, sage-juniper flats, and desert.	Low	Not Likely to Occur
Great Egret (Ardea alba) ROOKERIES	-/-/-	February – August	(Rookery) Colonial nester in large trees; rookery sites located near marshes, tide-flats, irrigated pastures, and margins of rivers and lakes.	Low	Foraging Onl
Great Blue Heron (Ardea herodias) ROOKERIES	-/-/-	February – August	(Rookery) Nests in tall trees in close proximity to foraging areas such as marshes and streams.	Low	Foraging Onl

Table 2 Special-Status Species for the Hayward, Dublin, Niles, and Newark 7.5 Minute Quadrangle Maps ¹							
Common Name/ Scientific Name	Status (Fed/State/ CNPS) ²	Blooming or Survey Period	Habitats of Occurrence	Potential on Site	Status on Site**		
Burrowing Owl (Athene cunicularia)	SOC/-/SC	February – August	Dry open annual or perennial grassland, desert and scrubland. Uses abandoned mammal burrows for nesting.	Low	Not Likely to Occur		
Red-Tailed Hawk (Buteo jamaicensis)	-/CP/-	February – August	Various grassland habitats, urban land, oak woodlands with grassland for foraging.	Present	Present		
Red-Shouldered Hawk (Buteo lineatus)	-/CP/-	February – August	Forages in variety of semi-developed habitats including orchards. Forages in woodlands and riparian areas. Nests in riparian habitat but also eucalyptus groves.	Low	May Occur		
Western Snowy Plover (Charadrius alexandrinus nivosus)	T/-/SC	February – August	Sandy beaches, salt pond levees, shores of large alkali lakes. Requires sandy, gravelly, or friable soils for nesting.	No	Presumed Absent		
Northern Harrier (Circus cyaneus)	-/-/SC	February – August	Nests in grasslands and marshlands, ground nesting bird. (Nesting) Coastal salt and freshwater marsh. Nest and forage in grasslands, from salt grass in desert sink to mountain cienagas. Nests on ground in shrubby vegetation, usually at marsh edge; nest built of a large mound of sticks in wet areas.	Low	May Occur		
Yellow Warbler (Dendroica petechia brewsteri)	-/-/SC	February – August	(Nesting) Riparian plant associations, prefers willows, cottonwoods, aspens, sycamores, and alders for nesting and foraging. Also nests in montane shrubbery in open conifer forests.	No	Presumed Absent		
Snowy Egret (Egretta thula) ROOKERIES	-/-/-	February – August	(Rookery) Colonial nester, with nest sites situated in protected beds of dense tules. Rookery sites situated close to foraging areas: marshes, tidal- flats, streams, wet meadows, and borders of lakes.	No	Presumed Absent		
White-Tailed Kite (Elanus leucurus)	SOC/CP/FP	February – August	Various grassland habitats, urban land, oak woodlands with grassland for foraging.	Low	May Occur		

Table 2 Special-Status Species for the Hayward, Dublin, Niles, and Newark 7.5 Minute Quadrangle Maps ¹						
Common Name/ Scientific Name	Status (Fed/State/ CNPS) ²	Blooming or Survey Period	Habitats of Occurrence	Potential on Site	Status on Site**	
California Horned Lark (Eremophila alpestris actia)	-/-/SC	February – August	Short-grass prairie, bald hills, mountain meadows, open coastal plains, fallow grain fields, and alkali flats. Prefer open terrain where they construct nests on the ground, often in sparsely vegetated areas.	Low	Not Likely to Occur	
American Kestrel (Falco sparverius)	-/CP/-	February – August	Various grassland habitats, urban land, oak woodlands with grassland for foraging.	Low	Not Likely to Occur	
Saltmarsh Common Yellowthroat (Geothlypis trichas sinuosa)	SOC/-/SC	February – August	Fresh and saltwater marshes of the San Francisco Bay area. Forages in thick, continuous vegetation down to water surface. Nests in tall grasses, tule patches, and willows.	No	Presumed Absent	
California Black Rail (Laterallus jamaicensis coturniculus)	SOC/T/FP	February – August	Occurs in tidal salt-marsh with heavy pickleweed growth. Mainly inhabits salt-marshes bordering larger bays. Also in fresh and brackish marshes, all at low elevation.	No	Presumed Absent	
Alameda Song Sparrow (Melospiza melodia pusillula)	-/-/SC	February – August	Resident of salt marshes bordering south arm of San Francisco Bay, inhabits <i>Salicornia</i> marshes, nests low in <i>Grindelia</i> bushes (high enough to escape high tides) and in <i>Salicornia</i> .	No	Presumed Absent	
California Clapper Rail (Rallus longirostris obsoletus)	E/E/-	February August	Salt to brackish-water marshes with tidal sloughs in San Francisco Bay area. Found in dense pickleweed.	No	Presumed Absent	
Bank Swallow (<i>Riparia riparia</i>)	SOC/T/-	February – August	Nests in colonies in riparian or other lowland habitats. Nest is constructed in vertical bank or cliff with fine sandy soils near streams, rivers, lakes or ocean.	No	Presumed Absent	

Special-Sta	atus Species for	r the Hayward, Du	Table 2 Iblin, Niles, and Newark 7.5 Minute Quadr	angle Maps ¹	
Common Name/ Scientific Name	Status (Fed/State/ CNPS) ²	Blooming or Survey Period	Habitats of Occurrence	Potential on Site	Status on Site**
California Least Tern (Sternula antillarum browni)	E/E/-	February – August	(Nesting colony) Nests along the coast from San Francisco Bay south to northern Baja California. Colonial breeder on bare or sparsely vegetated, flat substrates: sand beaches, alkali flats, land fills, or paved areas.	No	Presumed Absent
]	MAMMALS		
Pallid Bat (Antrozous pallidus)	-/-/SC	N/A	Forages in grasslands, shrublands, deserts, forests, and woodlands. Most common in open, dry habitats. Roosts in rock crevices, caves, tree hollows, and buildings. Roosts must protect bats from high temperatures; very sensitive to disturbance of roosting sites.	Low	Foraging Only
Western Mastiff Bat (Eumops perotis californicus)	-/-/SC	Resident	Many open, semi-arid to arid habitats, including conifer and deciduous woodlands, coastal scrub, grasslands, chaparral, etc. Roosts in crevices in cliff faces, high buildings, trees, and tunnels.	No	Presumed Absent
Hoary Bat (Lasiurus cinereus)	-/-/SC	Resident	Prefers open habitats or habitat mosaics with access to trees for cover and open areas or habitat edges for feeding. Roosts in dense foliage of medium to large trees near water. Feeds mainly on moths.	No	Presumed Absent
Yuma Myotis (Myotis yumanensis)	-/-/SC	Resident	Optimal habitats are open forests and woodlands with sources of water over which to feed. Maternal colonies occur in caves, mines, buildings or crevices.	No	Presumed Absent
San Francisco Dusky-Footed Woodrat (Neotoma fuscipes annectens)	-/-/SC	Resident	Forest habitats of moderate canopy and moderate to dense understory, may prefer chaparral and redwood habitats. Nests constructed of grass, leaves, sticks, feathers, etc. Population may be limited by availability of nest materials.	Low	Presumed Absent

Common Name/ Scientific Name	Status (Fed/State/ CNPS) ²	Blooming or Survey Period	Habitats of Occurrence	Potential on Site	Status on Site**
Salt-Marsh Harvest Mouse (Reithrodontomys raviventris)	E/E/FP	Resident	Middle marsh habitat dominated by pickleweed. Only in the saline emergent wetlands of San Francisco Bay and its tributaries. Pickleweed is primary habitat. Do not burrow, build loosely organized nests. Require higher areas for flood escape.	No	Presumed Absent
Salt-Marsh Wandering Shrew (Sorex vagrans halicoetes)	SOC/-/SC	Resident	Salt marshes of the southern arm of San Francisco Bay, medium high marsh 6-8 feet above sea level where abundant driftwood is scattered among <i>Salicornia</i> .	No	Presumed Absent
American Badger (Taxidea taxus)	-/-/SC	Resident	Shrub, forest, and herbaceous habitats with friable soils to dig burrows. Need open, uncultivated ground. Prey on fossorial mammals.	No	Presumed Absent
San Joaquin Kit Fox (Vulpes macrotis mutica)	Е/Т/-	Resident	Annual grasslands or grassy stages with scattered shrubby vegetation. Needs loose soils for burrowing.	No	Presumed Absent
 Order of Codes for Plants - Order of Codes for Animal Codes: SOC - Federal Species of C SC - California Species of E'- Federally/State Listed a T - Federally/State Listed a C - Species listed as a Cano R - Rare D - Delisted CP- California protected FP - State Fully Protected DFG: SC California Species 	Fed/State/CNPS s - Fed/State/CDFG Concern Special Concern is an Endangered Spec didate for Federal Th al Concern species tt Society considers t ed extinct in Californ eatened or Endangere w list to find more in	ecies ies reatened or Endangered S the plant Rare, Threatened ia. ed in California, but more formation about a particu	l, or Endangered in California and elsewhere. common elsewhere.		

ATTACHMENT 3 SITE PHOTOGRAPHS



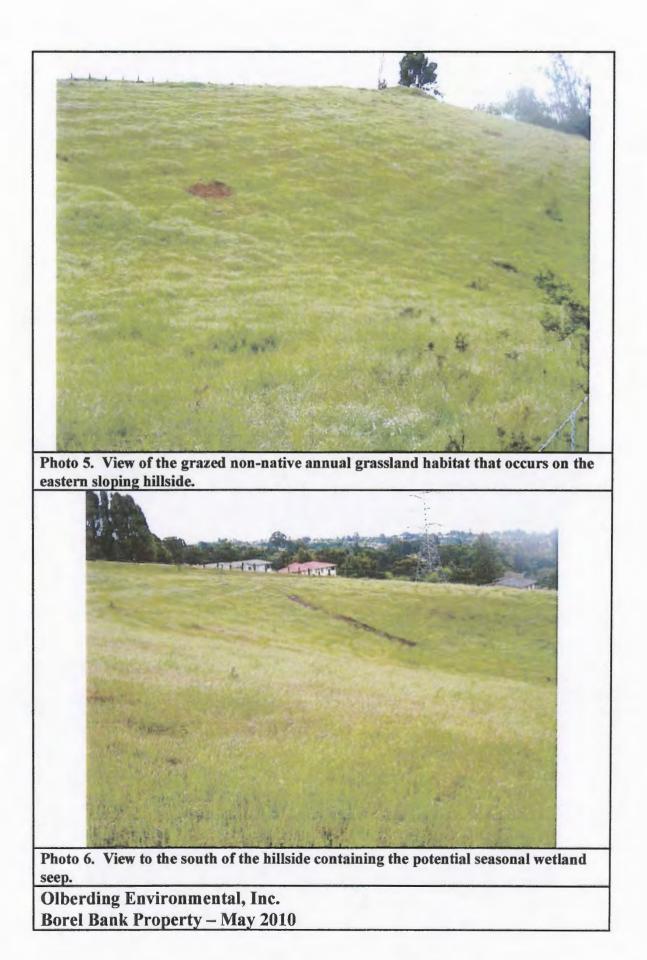


Photo 2. View of the non-native annual grassland habitat near the southeastern portion of the Property.

Olberding Environmental, Inc. Borel Bank Property – May 2010

Borel Bank Property – May 2010

APPENDIX C

Zander Associates, Letter from Leslie Zander addressed to Nat Taylor, Lamphier-Gregory entitled Wetland Review Borel Bank Property Castro Valley, California,

October 5, 2011

Environmental Consultants

October 5, 2011

Nat Taylor Lamphier-Gregory 1944 Embarcadero Oakland, CA 94606

Wetland Review Borel Bank Property Castro Valley, California

Dear Nat:

At your request, I have reviewed background documents for and conducted a site visit on the Borel Bank Property in Castro Valley, California to provide my opinion regarding the potential presence of jurisdictional wetlands. This letter summarizes the results of my review.

The primary background document reviewed was the "Biological Resources Analysis Report for the Borel Bank Property" prepared by Olberding Environmental, Inc., dated June 2010. Other documents consulted include the National Resource Conservation Service Web Soil Survey for the property and Hydric Soils List for Alameda County, the National Wetlands Inventory (U.S. Fish and Wildlife Service), and Weather Underground for historical precipitation records. My site visit was conducted on September 29, 2011.

The biological report prepared by Olberding Environmental identifies "several small areas of potentially seasonal wetland habitat..." on the property. These areas were identified as such based on presence of standing water at the time of the site visit and plants including *Lolium multiflorum* and *Polypogon monspeliensis*. In the Summary provided on page 1 of the report, it also states that positive indicators of wetland soils were found in these areas but there are no data included supporting that statement.

The site visit for the Olberding report was conducted on May 18, 2010; this was during a storm event that measured over 0.2 inch of precipitation and it followed an event one week earlier in which little over 0.1 inch of rain fell. This could account for the areas of standing water that were observed. The plants noted in the features are not necessarily characteristic of wetlands in our region. *Lolium multiflorum* is currently listed as a Facultative (FAC) on the National Wetland Plant List meaning that it is equally likely to occur in wetland and upland areas. The current revision to the NWPL is recommending that this species be listed as upland, because it is so widespread in California. *Polypogon monspeliensis* is listed Facultative Wetland (FACW); it usually occurs in wetlands, but occasionally is found in non-wetlands and it also is common throughout moist habitats in the greater Bay Area. There is a detailed description of the soils

mapped on the property included in the report but there is no information on which, if any, field indicators of hydric soil were observed in the potential wetland features. None of the soil series mapped on the property is listed as hydric on the Hydric Soils List for Alameda County.

The Olberding report identifies three potential wetland features based on the previously described criteria; one feature is located near the eastern boundary, a second is located near the western boundary, and a third is a potential wetland seep located on the northern facing hillside slope. None of these features is described in detail and there is no map included in the report identifying their location. The report also describes a small constructed drainage ditch along the western property fence line stating that it exhibits scouring and has an incised channel.

On September 29, 2011, I visited the property to locate and further evaluate the conditions of the features identified by Olberding. I did not observe any potential wetland areas on the property during my site visit. The feature reported near the eastern property fence line was not found. The eastern fenceline follows the edge of a relatively flat knoll for most its length but follows a slope to the north in the northeastern portion and slopes to the south in the southeastern portion of the site. Both of these slopes are relatively steep and the gradient continues offsite so it is unlikely that water ponds for long periods of time in these areas. I did not observe any microtopographic depressions, remnant hydrophytic vegetation, or other signs of potential wetlands along the eastern property boundary.

No potential wetland features were observed near the western boundary. The western boundary does cross a relatively steep bowl area where hillside runoff could collect at the bottom during storm events. However, the gradient continues less steeply offsite and ends at a detention basin constructed adjacent to a cul-de-sac so if water were to pond in the bottom of the bowl, it likely wouldn't remain for long periods following the storm. The vegetation at the bottom of the bowl near the property boundary consists primarily of upland grasses and herb with scattered shrubs of cotoneaster, coyote brush and coffeeberry in the vicinity. Some remnants of *Polypogon* were observed in the area but it is not the predominant species. The soils are dry, even in color and texture, and do not exhibit any hydric soil field indicators (e.g. depleted matrix, redox dark surface, redox depressions). No signs of ponding (e.g. matted vegetation, algal matting, cracked soils) were observed here. This could be the area that was identified as the potential wetland feature near the western boundary in the Olberding report.

The third feature, a hillside seep, was also not found. This feature was reported to be on the northern facing hillside slope; however, the photograph of the seep included in the report (Photo 6) suggests that it is on the west-facing slope of the bowl area described in the previous paragraph. I did not identify any wetland vegetation on the slopes of the bowl nor did I observe any hillside seeps anywhere on the property during my site visit. If seeps were present, they would have been easy to detect at this time of year because of the marked contrast in vegetation between green, water-fed plants and the dried annual grasses that dominate the site.

The "constructed drainage ditch" identified along the western property boundary does not appear to be constructed nor does it appear to convey drainage through the site. Rather, it appears to be an erosional gully formed likely as a result of water running downhill during storm events. I did not observe an incised channel and the feature stops a good distance upslope from where the property meets Fairview Avenue. Also, there is no culvert at Fairview Avenue that would indicate drainage from the property needs to be directed offsite. Even looking at the photograph of the drainage that is provided in the Olberding report, it is difficult to see an incised channel feature. Instead, it looks like a gully that is heavily vegetated with annual grasses similar to the remainder of the slope and even after rain events (assuming the photograph was taken during the May 18, 2010 site visit) there is little evidence of flow through the area.

Based on review of the background data and results of my field reconnaissance, it is my opinion that there are no areas on the Borel Bank Property that meet U.S. Army Corps of Engineers (Corps) wetland criteria and therefore a formal jurisdictional determination is not necessary.

Should you have any questions regarding the results of my review, please don't hesitate to call me.

Sincerely,


Justii Zandu

Leslie Zander Principal Biologist

APPENDIX D

Northwest Information Center

Record Search Results for the Proposed Fairview District Development Project, Alameda County

August 11, 2011

Nathaniel Taylor Lamphier Gregory 1944 Embarcadero Oakland, CA 94606 NWIC File No.: 11-0130

Re: Record search results for the proposed Fairview District development project, Alameda County.

Dear Mr. Taylor:

Per your request received by our office on 4 August 2011, a records search was conducted for the above referenced project by reviewing pertinent Northwest Information Center (NWIC) base maps that reference cultural resources records and reports, historic-period maps, and literature for Alameda County. Please note that use of the term cultural resources includes archaeological resources and historical buildings and/or structures.

Review of this information indicates that there has been no record of any cultural resources studies that cover the Fairview District project area. This project area contains no recorded archaeological resources. Local, state and federal inventories include no recorded buildings or structures within the proposed project area. In addition to these inventories, the NWIC base maps show no recorded buildings or structures.

At the time of Euroamerican contact the Native Americans that lived in the area were speakers of a dialect of the Costanoan/Ohlone language, part of the Utian language family (Levy 1978:485). There are no Native American resources in or adjacent to the proposed project area referenced in the ethnographic literature.

Based on an evaluation of the environmental setting and features associated with known sites, Native American resources in this part of Alameda County have been found in close proximity to sources of water (including perennial and intermittent streams and springs), near ecotones, and along principal ridgelines. The Fairview District project area contains several favorable midslope terraces and is located in the transition zone from the bay flats to Walpert Ridge. Given the similarity of these environmental factors, there is a moderate potential of identifying unrecorded Native American resources in the proposed Fairview District project area.

Review of historical literature and maps gave no indication of the possibility of historic-period archaeological resources within the Fairview District project area. With

this in mind, there is a low potential of identifying unrecorded historic-period archaeological resources in the proposed Fairview District project area.

The 1915 Hayward USGS 15-minute topographic quadrangle fails to depict any buildings or structures within the Fairview District project area; therefore, there is a low possibility of identifying any buildings or structures 45 years or older within the project area.

RECOMMENDATIONS:

1) There is a moderate possibility of identifying Native American archaeological resources and a low possibility of identifying historic-period archaeological resources in the project area. We recommend a qualified archaeologist conduct further archival and field study to identify cultural resources. Field study may include, but is not limited to, pedestrian survey, hand auger sampling, shovel test units, or geoarchaeological analyses as well as other common methods used to identify the presence of archaeological resources. Please refer to the list of consultants who meet the Secretary of Interior's Standards at http://www.chrisinfo.org.

3) Review for possible historic-period buildings or structures has included only those sources listed in the attached bibliography and should not be considered comprehensive.

4) If archaeological resources are encountered <u>during construction</u>, work should be temporarily halted in the vicinity of the discovered materials and workers should avoid altering the materials and their context until a qualified professional archaeologist has evaluated the situation and provided appropriate recommendations. <u>Project personnel</u> <u>should not collect cultural resources</u>. Native American resources include chert or obsidian flakes, projectile points, mortars, and pestles; and dark friable soil containing shell and bone dietary debris, heat-affected rock, or human burials. Historic-period resources include stone or adobe foundations or walls; structures and remains with square nails; and refuse deposits or bottle dumps, often located in old wells or privies.

5) It is recommended that any identified cultural resources be recorded on DPR 523 historic resource recordation forms, available online from the Office of Historic Preservation's website: <u>http://ohp.parks.ca.gov/default.asp?page_id=1069</u>

Thank you for using our services. Please contact this office if you have any questions, (707) 588-8455.

Bryan Much

Assistant Coordinator

LITERATURE REVIEWED

In addition to archaeological maps and site records on file at the Historical Resources Information System, Northwest Information Center, the following literature was reviewed:

Bowman, J.N.

1951 Adobe Houses in the San Francisco Bay Region. In Geologic Guidebook of the San Francisco Bay Counties, Bulletin 154. California Division of Mines, Ferry Building, San Francisco, CA.

Cook, S.F.

1957 *The Aboriginal Population of Alameda and Contra Costa Counties*. University of California Anthropological Records 16(4):131-156. Berkeley and Los Angeles.

Fickewirth, Alvin A.

1992 California Railroads. Golden West Books, San Marino, CA.

Gudde, Erwin G.

1969 California Place Names: The Origin and Etymology of Current Geographical Names. Third Edition. University of California Press, Berkeley and Los Angeles.

Hart, James D.

1987 A Companion to California. University of California Press, Berkeley and Los Angeles.

Heizer, Robert F., editor

1974 *Local History Studies*, Vol. 18., "The Costanoan Indians." California History Center, DeAnza College, Cupertino, CA.

Helley, E.J., K.R. Lajoie, W.E. Spangle, and M.L. Blair

- 1979 Flatland Deposits of the San Francisco Bay Region Their Geology and Engineering Properties, and Their Importance to Comprehensive Planning. Geological Survey Professional Paper 943. United States Geological Survey and Department of Housing and Urban Development.
- Hoover, Mildred Brooke, Hero Eugene Rensch, and Ethel Rensch, revised by William N. Abeloe 1966 *Historic Spots in California*. Third Edition. Stanford University Press, Stanford, CA.

Hoover, Mildred Brooke, Hero Eugene Rensch, and Ethel Rensch, William N. Abeloe, revised by Douglas E. Kyle

1990 Historic Spots in California. Fourth Edition. Stanford University Press, Stanford, CA.

Hope, Andrew

2005 *Caltrans Statewide Historic Bridge Inventory Update*. Caltrans, Division of Environmental Analysis, Sacramento, CA.

Kroeber, A.L.

1925 Handbook of the Indians of California. Bureau of American Ethnology, Bulletin 78, Smithsonian Institution, Washington, D.C. (Reprint by Dover Publications, Inc., New York, 1976).

Levy, Richard

1978 Costanoan. In *California,* edited by Robert F. Heizer, pp. 485-495. Handbook of North American Indians, vol. 8, William C. Sturtevant, general editor. Smithsonian Institution, Washington, D.C.

Milliken, Randall

1995 A Time of Little Choice: The Disintegration of Tribal Culture in the San Francisco Bay Area 1769-1810. Ballena Press Anthropological Papers No. 43, Menlo Park, CA.

Myers, William A. (editor)

1977 *Historic Civil Engineering Landmarks of San Francisco and Northern California.* Prepared by The History and Heritage Committee, San Francisco Section, American Society of Civil Engineers. Pacific Gas and Electric Company, San Francisco, CA.

Nelson, N.C.

1909 Shellmounds of the San Francisco Bay Region. University of California Publications in American Archaeology and Ethnology 7(4):309-356. (Reprint by Kraus Reprint Corporation, New York, 1964)

Nichols, Donald R., and Nancy A. Wright

1971 Preliminary Map of Historic Margins of Marshland, San Francisco Bay, California. U.S. Geological Survey Open File Map. U.S. Department of the Interior, Geological Survey in cooperation with the U.S. Department of Housing and Urban Development, Washington, D.C.

Roberts, George, and Jan Roberts

1988 Discover Historic California. Gem Guides Book Co., Pico Rivera, CA.

State of California Department of Parks and Recreation

- 1976 *California Inventory of Historic Resources.* State of California Department of Parks and Recreation, Sacramento.
- State of California Department of Parks and Recreation and Office of Historic Preservation 1988 *Five Views: An Ethnic Sites Survey for California.* State of California Department of Parks and Recreation and Office of Historic Preservation, Sacramento.

State of California Office of Historic Preservation **

2011 *Historic Properties Directory*. Listing by City (through March, 15 2011). State of California Office of Historic Preservation, Sacramento.

Thompson & West

1878 Official and Historical Atlas Map of Alameda County, California. Thompson & West, Oakland. (Reprint by Valley Publishers, Fresno, 1976)

Ver Planck, W.E.

1957 Salt: California Division of Mines and Geology Bulletin 176. Ferry Building, San Francisco.

Williams, James C.

1997 *Energy and the Making of Modern California.* The University of Akron Press, Akron, OH.

Woodbridge, Sally B.

s/*

1988 California Architecture: Historic American Buildings Survey. Chronicle Books, San Francisco, CA.

Works Progress Administration

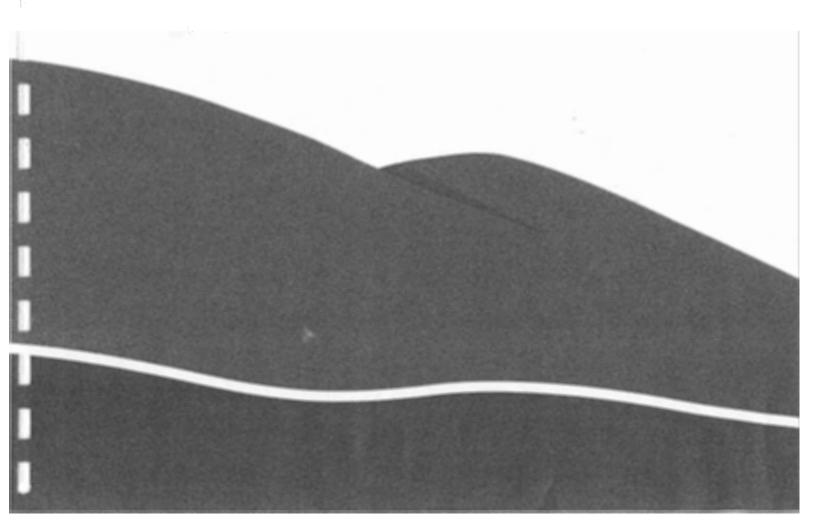
1984 *The WPA Guide to California*. Reprint by Pantheon Books, New York. (Originally published as California: A Guide to the Golden State in 1939 by Books, Inc., distributed by Hastings House Publishers, New York.)

**Note that the Office of Historic Preservation's *Historic Properties Directory* includes National Register, State Registered Landmarks, California Points of Historical Interest, and the California Register of Historical Resources as well as Certified Local Government surveys that have undergone Section 106 review.

APPENDIX E

Berlogar Geotechnical Consultants,

Preliminary Geotechnical Investigation, Borel Bank Properties Residential Subdivision Fairview Avenue, Hayward California


BGC

BERLOGAR GEOTECHNICAL CONSULTANTS

SOIL ENGINEERS ENGINEERING GEOLOGISTS

PRELIMINARY GEOTECHNICAL INVESTIGATION BOREL BANK PROPERTIES RESIDENTIAL SUBDIVISION FAIRVIEW AVENUE HAYWARD, CALIFORNIA

FOR NORTHBROOK HOMES, LLC July 8, 2010

July 8, 2010 Job No. 3255.100

Mr. Gary Brooks Northbrook Homes, LLC 7020 Koll Center Parkway, Suite 101 Pleasanton, California 94566

Subject: Preliminary Geotechnical Investigation Borel Bank Properties Residential Subdivision Fairview Avenue Hayward, California

Dear Mr. Brooks:

This report presents the results of our preliminary geotechnical investigation for a proposed 18-lot single-family residential subdivision in Hayward, California. Plate 1, Vicinity Map, shows the locations of the site. We expect the one and two-story residences will be supported on shallow foundations. The residential development will include cuts and fill up to about 20 feet deep. A new road will be constructed up from Fairview Avenue to access the development. A detention basin is proposed in the southwest corner of the property.

PURPOSE AND SCOPE OF SERVICES

The purpose of this preliminary investigation was to investigate the site soil, bedrock and groundwater conditions and to evaluate the feasibility of planned development from a geotechnical engineering standpoint. Our scope of services included:

- 1. Review of published maps and literature pertinent to the site and vicinity,
- 2. Reviewing existing geotechnical and geologic reports pertaining to the site,
- 3. Excavating and logging exploratory test pits,
- 4. Preliminary geotechnical engineering and geologic analysis,
- 5. Providing preliminary grading, retaining wall and foundation recommendations, and
- 6. Preparation of this report.

SITE CONDITIONS

SURFACE CONDITIONS

The approximate 10.1-acre, roughly rectangular-shaped site is located on the north side of Fairview Avenue as shown on Plate 2, Site Plan. The site is currently accessed from Fairview Avenue on the

July 8, 2010 Job No. 3255.100 Page 2 of 7

south and from Karina Street on the west. A high knob is located in the south-central portion of the site with an elevation of about 710 feet MSL. The site slopes down from the knob in three directions: towards the northeast to 610 feet MSL, to the west to 600 ft MSL, and to the southwest to Fairview Avenue at about 560 ft MSL. The northwestern boundary abuts Karina Street along a ridgeline. A PG&E electric transmission tower easement runs northeasterly outside the eastern property boundary.

SUBSURFACE CONDITIONS

Eight test pits between 4 to 13 feet deep were excavated at the site on May 11, 2010. The test pits indicate that the site is underlain by a thin soil layer over Panoche shale and sandstone bedrock with colluvium over bedrock in the drainage swales as shown on the Site Plan. The soil mantling the bedrock was about 2 to 3 feet thick over the sandstone and 4 to 5 feet thick over the shale. The soil overlying the bedrock generally consisted of gray brown, moist, stiff silty and sandy clay. A sliver fill consisting of a mixture of sand, gravel, and silty clay was encountered in the upper foot of TP-2. Graphic test pit logs are contained on Plates 3 and 4.

Colluvium interpreted to be more than about 5 feet thick is shown on Plate 2, Site Plan. Colluvial soil encountered in TP-1 was about 10 feet thick over the bedrock and consisted of gray-brown, medium stiff to stiff, moist to wet sandy and silty clay. TP-4 was excavated to a depth of 13 feet and encountered moist to wet, stiff, silty and clayey sand colluvium. Bedrock was not exposed at the bottom of TP-4.

Panoche sandstone covers half the site in the higher elevation ridges and knobs and Panoche shale was encountered in the northern, lower lying portion of the site. The sandstone was found to be light gray brown, moderately hard to hard, highly weathered, moderately fractured, with fine to medium-grained sand particles. The Panoche shale material encountered in TP-3, TP-5, and TP-6 was found to be gray-brown, friable, highly weathered, highly fractured shale and sandstone. The strike and dip of bedding, where visible in the test pits, were obtained and are shown on the Site Plan. The bedrock has been folded, sheared, and deformed in this area due to the proximal Hayward fault. As such, bedding orientation varies throughout the site.

GROUNDWATER

Groundwater was not encountered in the test pits.

GEOLOGIC HAZARDS

LANDSLIDES

Mapped landslides at the sites were not found in the geologic literature in our files and we did not find evidence of active landslides during our field exploration.

July 8, 2010 Job No. 3255.100 Page 3 of 7

EARTHQUAKES

The site is not located within a designated State of California Earthquake Fault Zone for active faults. We did not observe signs of active faults during our field exploration. Hence, the potential for surface fault rupture at the site is low. The peak ground acceleration at this site (37.6778 degrees latitude and -122.0426 degrees longitude) according to the California Geologic Survey website is 0.686 g.

LIQUEFACTION AND DYNAMIC COMPACTION

Liquefaction is the temporary transformation of saturated, loose cohesionless soils into a viscous liquid during strong ground shaking from a major earthquake. The site is underlain by clayey soils and bedrock. Therefore, the risk of liquefaction at the site is believed to be low. Dynamic compaction is the densification of dry, loose sandy soil above the water table. Loose, relatively clean sandy soil was not encountered in the test pits and borings, hence, the potential for dynamic compaction is considered to be low.

SOIL CORROSIVITY

A soil sample from TP-4 was submitted to CERCO Analytical, a California state certified laboratory, for corrosion testing. The test results and a brief evaluation by CERCO are attached. The soil was found to be mildly corrosive to buried steel and iron. The soil was not found to be corrosive to concrete in contact with the ground.

PRELIMINARY CONCLUSIONS AND RECOMMENDATIONS

GENERAL

From a geotechnical engineering standpoint, the proposed development appears to be feasible at the site, provided the preliminary conclusions and recommendations contained in this report are followed as project planning advances. The preliminary conclusions and recommendations are not adequate for final project design; therefore, a design-level geotechnical investigation should be performed to provide conclusions and recommendations for the design and construction of the project.

EXISTING COLLUVIUM

Two areas of colluvium are present at the site as shown on Plate 2, Site Plan. The colluvium on the south end of the project is located in an area of cut and fill grading, and the north end colluvium covers areas of graded fill and undisturbed ground. Colluvial soil within the development limits will likely have to be removed and replaced as engineered fill. A keyway and keyway drains will be required along the property boundary for the southern colluvial area at the proposed detention basin. A keyway and keyway drains may be needed for the northern colluvial zone in the proposed fill area. The keyway would be constructed within the proposed fill area along the boundary of the proposed

July 8, 2010 Job No. 3255.100 Page 4 of 7

fill and undeveloped zone. The keyways may need to be internally reinforced with geogrid. Benching and intermediate subdrains will also be required (see Plate 5, Typical Subdrain Details).

HARD SANDSTONE BEDROCK

Our experience in the general area indicates that hard concretions of sandstone are present in the Panoche sandstone that are likely to be very difficult to excavate. Overexcavation should be considered during mass grading for deep utilities and street utility corridors in cut areas due to the potentially hard rock. Oversized rock will be generated and may need to be buried in deep fill, utilized for landscaping or removed from the site. The design level geotechnical investigation will need to address the potential for hard rock excavation during mass grading and underground utility trenching.

CUT/FILL TRANSITION LOTS

Overexcavation of the cut portion of cut and fill transition lots will be necessary to reduce the potential for differential settlement of the residences.

CUTSLOPE STABILITY

The bedding in the underlying bedrock is not oriented adversely in relation to the proposed grading plan. Our experience indicates that cuts in the sandstone may be relatively stable. Temporary cut slope stability in the sheared shale and sandstone in the central portion of the site will need to be addressed in the design level report.

EXISTING UNDOCUMENTED FILL

A sliver fill was encountered in TP-2. This fill material appears likely to be removed by cut grading in this area. If other areas of undocumented fill are encountered, the fill material would need to be removed and replaced as engineered fill.

EXPANSIVE SOIL

We performed Atterberg Limits tests on two clayey soil samples obtained from the site. The results are shown on the Test Pit logs. The Plasticity Index was found to be 6 and 9 with a corresponding Liquid Limit of 22 and 25. Hence, the soil at the site appears to have low expansion potential.

SITE PREPARATION AND GRADING

We anticipate that recommendations for site preparation and grading will be typical for residential projects in the vicinity. Detailed recommendations for clearing and stripping, over-excavation of the existing fill, subgrade preparation, selection and evaluation of fill material, relative compaction and moisture conditioning of fill materials, benching and subdrainage of fill should be provided in the future design-level geotechnical investigation.

July 8, 2010 Job No. 3255.100 Page 5 of 7

OVEREXCAVATION RECOMMENDATIONS

The two areas of colluvium located within the development boundary, where not removed by mass grading, should be overexcavated and replaced as engineered fill. We expect the colluvium to be up to 20 feet thick in pockets with an average thickness of about 10 feet. Colluvium exposed in cut slopes will need to removed and built back as engineered fill slopes.

Overexcavation will likely be needed in cut and fill transition areas to reduce potential differential settlement. Due to the potentially hard sandstone bedrock in the southern half of the site, utility corridors in cut areas may need to be overexcavated during mass grading. It would be easier to overexcavate hard rock during large mass grading with heavy equipment rather than during utility trench installation with backhoes or excavators. Oversized rock generated during mass grading may be buried in deep fill areas, used in landscaping, or removed from the site.

CUT AND FILL SLOPES

On a preliminary basis, we recommend the following cut and fill slope inclinations.

- Cut and fill slopes up to 10 feet high can be inclined at 2H:1V.
- Cut slopes over 10 feet high in sandstone can be inclined at 2H:1V.
- Fill slopes over 10 feet high constructed with clayey soil should be inclined at 3H:1V
- Fill slopes over 10 feet high constructed with sandy soil can be inclined at 2H:1V.
- Cut and fill slopes more than 30 feet high should be evaluated further.

KEYWAYS

A keyway is recommended for the base of slopes located in the two areas of colluvium (see Site Plan). A keyway in colluvium may be required along the western property boundary at the detention basin location and above the northeastern swale along the grading limits. These keyways may need to be internally reinforced with geogrid.

SUBDRAINAGE

Subdrains may be required for rebuilt cut slopes, intermediate benches and keyways (see Plate 5, Typical Subdrain Details). We also recommend edge underdrains for streets in pavement areas as shown on Roadway Underdrain, Plate 6. Subdrains should consist of perforated PVC pipe conforming to ASTM Designation D 2751, Type SDR 35. Subdrain pipes should have two rows of holes and should be installed with holes facing downward. Subdrain pipes should be at least 6 inches in diameter. Subdrain pipes should be underlain and surrounded by at least 6 inches of Caltrans Class 2 permeable material, as defined in Section 68-1.025 of the State of California Standard Specification (May 2006). Subdrain systems should discharge into storm drain structures, where possible, or other suitable surface discharge points.

July 8, 2010 Job No. 3255.100 Page 6 of 7

FOUNDATION CONSIDERATIONS

It is our opinion that, from a geotechnical engineering standpoint, the proposed houses be supported on post-tension concrete slab foundations. The PT slabs should be designed in accordance with the 2007 CBC requirements and to accommodate potential differential settlement from differential fill settlement.

CORROSION CONSIDERATIONS

A sample of soil was submitted CERCO Analytical laboratories for corrosivity testing. The results of the tests will be presented once the testing in completed.

SEISMIC DESIGN PARAMETERS

It is likely that the site will be subjected to strong ground shaking from at least one moderate to severe earthquake during the life span of the project. According to the United States Geological Survey, Earthquake Ground Motion Parameters program, version 5.0.9a dated 10-21-09, the following 2007 CBC seismic design parameters should be incorporated in the structural design of the proposed buildings (for a site located at 37.6778 degrees latitude and -122.0426 degrees longitude).

Site Class	С
Mapped Spectral Acceleration for Short Periods, S _s , for Site Class B with 5% damping	1.786 g
Mapped Spectral Acceleration for 1-second Period, S ₁ , for Site Class B with 5% damping	0.665 g
SM _s for Site Class C	1.786 g
SM ₁ for Site Class C	0.864 g
SD _s for Site Class C	1.191 g
SD ₁ for Site Class C	0.576 g

PRELIMINARY PAVEMENT SECTIONS

Pavement analyses are based upon an assumed resistance R-value of 10, which we expect to be representative of final pavement subgrade materials. We recommend the following preliminary pavement sections based on the Caltrans Design Method for Flexible Pavement.

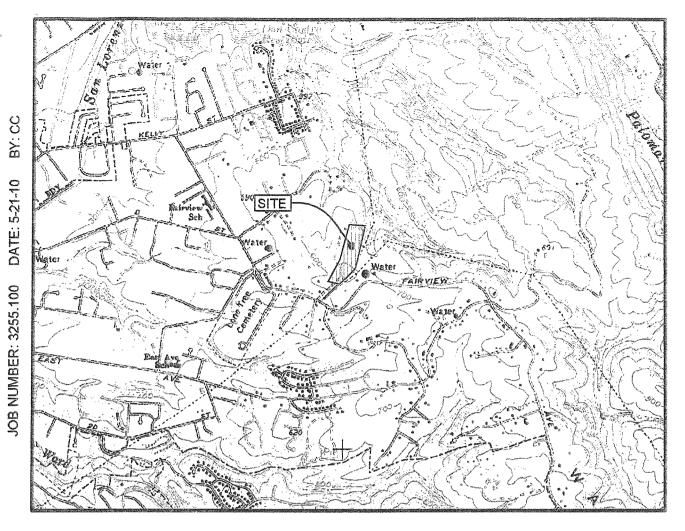
Design Parameters		Thickness (inches)		
Traffic Index	R-Value	Asphalt Concrete	Class 2 Aggregate Base	
41/2	10	3	7	
5	10	3	9	
6	10	4	10	

July 8, 2010 Job No. 3255.100 Page 7 of 7

LIMITATIONS

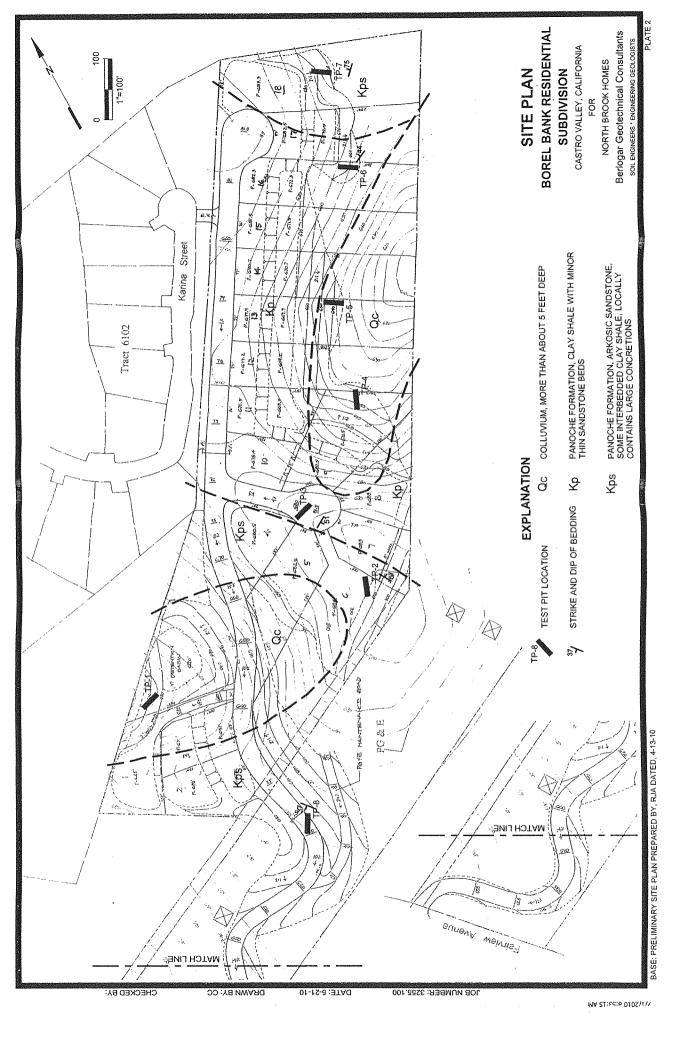
The preliminary conclusions and recommendations of this report are based upon the information provided to us regarding the proposed residential development, subsurface conditions encountered at the test pit locations, our site reconnaissance, and professional judgment. The locations of the test pits were determined in the field by estimating from topographic and cultural features, and are to be considered approximate only. Site conditions are described in the text as they were observed during our site reconnaissance in the spring of 2010, and are not necessarily representative of such conditions at other locations and times. This study has been conducted in accordance with current professional geotechnical engineering and engineering geologic standards; no other warranty is expressed or implied.

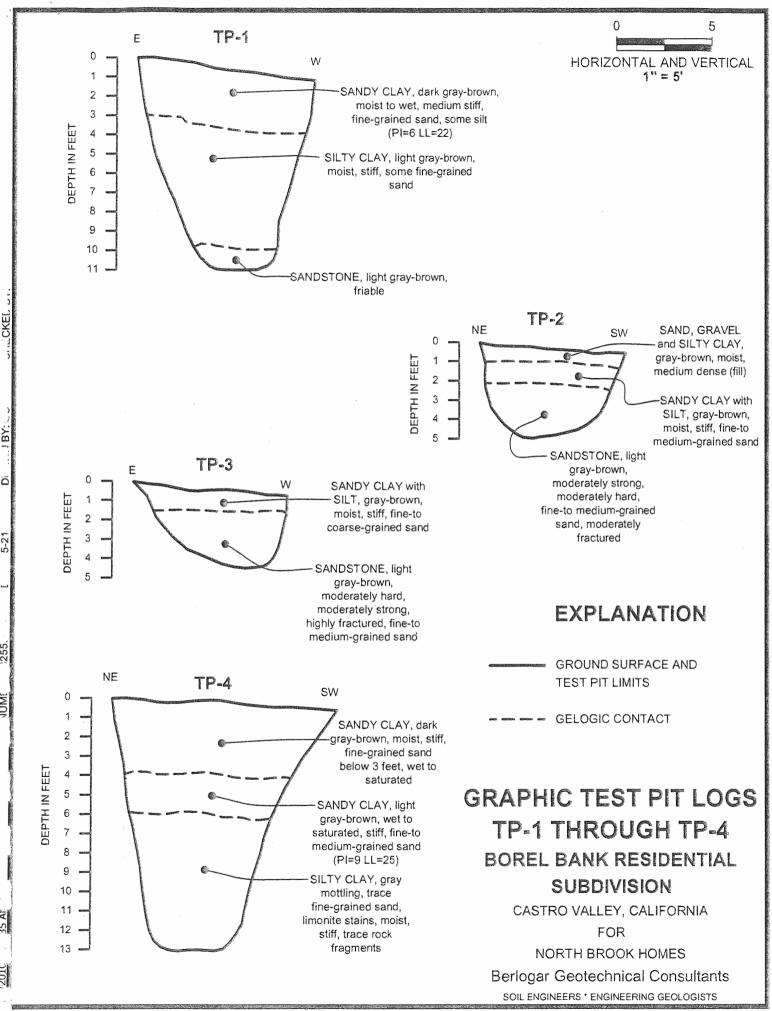
We trust this provides the necessary information. If you have any questions, please contact the undersigned at (925) 484-0220. Thank you for the opportunity of providing professional services for you.


Respectfully submitted,

BERLOGAR GEOTECHNICAL CONSULTANTS

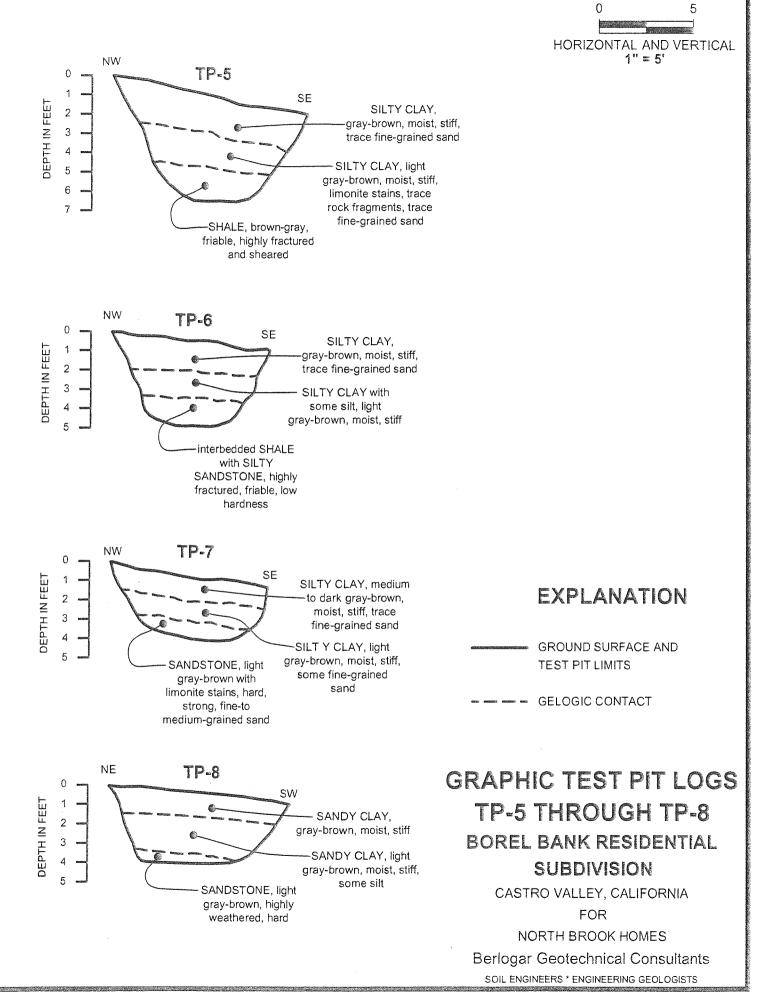
Copies: Addressee (6)


3255.100/23011.doc



VICINITY MAP BOREL BANK RESIDENTIAL SUBDIVISION CASTRO VALLEY, CALIFORNIA FOR NORTH BROOK HOMES

WY 44 25:8 26:00 27:5 27:5 27:5 20:00


i ΒΥ:

õ

5-21

2555.

JUME

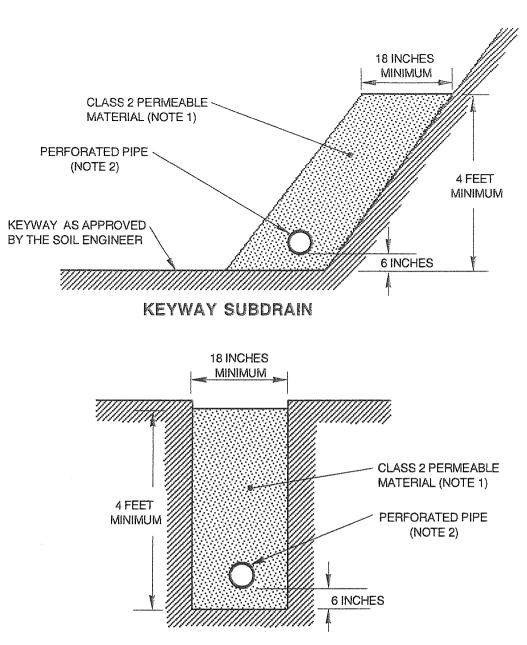
OKEL

BΥ: (

b

5-21-

L.


255

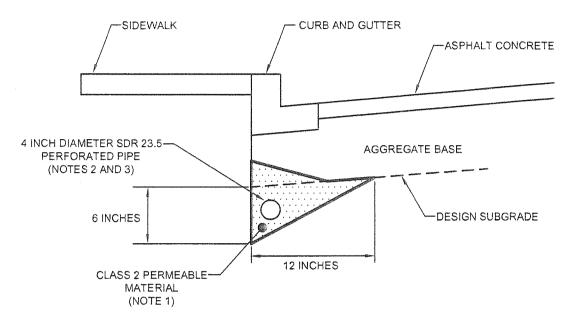
IUME

17 AV

2010

DATE: 5-21-10 BY: CC

COLLECTOR SUBDRAIN


NOTES:

1. CLASS 2 PERMEABLE MATERIAL AS GIVEN IN SECTION 68 - 1.025, STATE OF CALIFORNIA STANDARD SPECIFICATIONS, JULY, 2006 EDITION.

2. PERFORATED PIPE PLACED PERFORATIONS DOWN, PVC PIPE WITH A MINIMUM DIAMETER OF SIX (6) INCHES, CONFORMING TO ASTM D-3034 SDR 35, FOR DEPTHS LESS THAN 30 FEET, AND SDR 23.5 FOR THE DEPTHS GREATER THAN 30 FEET.

TYPICAL SUBDRAIN DETAILS

BERLOGAR GEOTECHNICAL CONSULTANTS

NOTES:

- 1. CLASS 2 PERMEABLE MATERIAL AS GIVEN IN SECTION 68-1.025, STATE OF CALIFORNIA STANDARD SPECIFICATIONS.
- 2. PERFORATED PIPE TO BE PLACED WITH PERFORATIONS DOWN AND SURROUNDED BY AT LEAST 2 INCHES OF CLASS 2 PERMEABLE MATERIAL.
- 3. PERFORATED PIPE TO DISCHARGE INTO EACH CATCH BASIN / DRAINAGE INLET.

SCALE N.T.S.

ROADWAY UNDERDRAIN

BERLOGAR GEOTECHNICAL CONSULTANTS

JOb ΝυΜΒΕΚ: 3255.1ύυ

California State Certified Laboratory No. 2153

Long a n a l y t i c a l 1100 Willow Pass Court, Suite A Concord, CA 94520-1006 925 462 2771 Fax. 925 462 2775 www.cercoanalytical.com

CER(

CACENTED JUNIS SIGN

isioza (et) matal

10 June 2010

Job No.1005222 Cust. No.10598

Mr. Bill Stevens Berlogar Geotechnical Consultants 5587 Sunol Blvd. Pleasanton, CA 94566

Subject: Project No.: 3255.100 Project Name: Hayward Corrosivity Analysis – ASTM Test Methods with Brief Evaluation

Dear Mr. Stevens:

Pursuant to your request, CERCO Analytical has analyzed the soil sample submitted on May 27, 2010. Based on the analytical results, a brief corrosivity evaluation is enclosed for your consideration.

Based upon the resistivity measurement, this sample is classified as "mildly corrosive". All buried iron, steel, cast iron, ductile iron, galvanized steel and dielectric coated steel or iron should be properly protected against corrosion depending upon the critical nature of the structure. All buried metallic pressure piping such as ductile iron firewater pipelines should be protected against corrosion.

The chloride ion concentration reflects none detected with a detection limit of 15 mg/kg.

The sulfate ion concentration reflects none detected with a detection limit of 15 mg/kg.

The pH of the soil is 6.5 which does not present corrosion problems for buried iron, steel, mortar-coated steel and reinforced concrete structures.

The redox potential is 440-mV, which is indicative of aerobic soil conditions.

This corrosivity evaluation is based on general corrosion engineering standards and is non-specific in nature. For specific long-term corrosion control design recommendations or consultation, please call JDH Corrosion Consultants, Inc. at (925) 927-6630.

We appreciate the opportunity of working with you on this project. If you have any questions, or if you require further information, please do not hesitate to contact us.

Very truly yours, CERCO ANALY(TICAL), INC. Memil for Y. Darby Howard, Jr., P.E.

President

JDH/jdl Enclosure

1999 - In 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 19 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999		ſ.			,	2	1		د	11	
	icia	а	n	а	ani ya kutaka ku	у	4	;	C	9	encontra In-

1100 Willow Pass Court, Suite A Concord, CA 94520-1006 925 462 2771 Fax: 925 462 2775 www.cercoanalytical.com

10-Jun-2010

Date of Report:

Client:	Berlogar Geotechnical Consultants
Client's Project No.:	3255.100
Client's Project Name:	Hayward
Date Sampled:	15-May-10
Date Received:	27-May-10
Matrix:	Soil
Authorization:	Chain of Custody

					Resistivity			
		Redox		Conductivity	(100% Saturation)	Sulfide	Chloride	Sulfate
Job/Sample No.	Sample I.D.	(mV)	pН	(umhos/cm)*	(ohms-cm)	(mg/kg)*	(mg/kg)*	(mg/kg)*
1005222-001	TP-4	440	6.5		12,000	-	N.D.	N.D.
						÷		
						<u></u>		

۰.

Method:	ASTM D1498	ASTM D4972	ASTM D1125M	ASTM G57	ASTM D4658M	ASTM D4327	ASTM D4327
Detection Limit:	-	-	10	~	50	15	15
Date Analyzed:	8-Jun-2010	8-Jun-2010	-	8-Jun-2010	-	8-Jun-2010	8-Jun-2010

then She hut

* Results Reported on "As Received" Basis

N.D. - None Detected

Cheryl McMillen Laboratory Director

APPENDIX F


Environmental Data Resources (EDR), *The EDR Radius Map™ Report with GeoCheck, Prepared for the Northbrook Homes Fairview Site, 24850 Fairview Avenue, Hayward, CA 94542*

Northbrook Homes Fairview Site

24850 Fairview Avenue Hayward, CA 94542

Inquiry Number: 3143080.2s August 08, 2011

The EDR Radius Map[™] Report with GeoCheck®

440 Wheelers Farms Road Milford, CT 06461 Toll Free: 800.352.0050 www.edrnet.com

TABLE OF CONTENTS

SECTION

PAGE

Executive Summary	ES1
Overview Map	2
Detail Map	3
Map Findings Summary	4
Map Findings	8
Orphan Summary	16
Government Records Searched/Data Currency Tracking	GR-1

GEOCHECK ADDENDUM

Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting SSURGO Soil Map	A-5
Physical Setting Source Map	A-9
Physical Setting Source Map Findings	A-11
Physical Setting Source Records Searched	A-12

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental St Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2011 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-05) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

24850 FAIRVIEW AVENUE HAYWARD, CA 94542

COORDINATES

Latitude (North):	37.678400 - 37° 40' 42.2"
Longitude (West):	122.042500 - 122° 2' 33.0"
Universal Tranverse Mercator:	Zone 10
UTM X (Meters):	584434.8
UTM Y (Meters):	4170360.2
Elevation:	657 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map:	37122-F1 HAYWARD, CA
Most Recent Revision:	1980

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from: Source: 2006, 2005 USDA

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list
NPL_____ National Priority List

Proposed NPL_____ Proposed National Priority List Sites NPL LIENS_____ Federal Superfund Liens

Federal Delisted NPL site list

Delisted NPL..... National Priority List Deletions

Federal CERCLIS list

Federal CERCLIS NFRAP site List

CERC-NFRAP...... CERCLIS No Further Remedial Action Planned

Federal RCRA CORRACTS facilities list

CORRACTS..... Corrective Action Report

Federal RCRA non-CORRACTS TSD facilities list

RCRA-TSDF..... RCRA - Treatment, Storage and Disposal

Federal RCRA generators list

RCRA-LQG	RCRA - Large Quantity Generators
RCRA-SQG	RCRA - Small Quantity Generators
RCRA-CESQG	RCRA - Conditionally Exempt Small Quantity Generator

Federal institutional controls / engineering controls registries

US ENG CONTROLS...... Engineering Controls Sites List US INST CONTROL...... Sites with Institutional Controls

Federal ERNS list

ERNS..... Emergency Response Notification System

State- and tribal - equivalent NPL

RESPONSE..... State Response Sites

State and tribal landfill and/or solid waste disposal site lists

SWF/LF..... Solid Waste Information System

State and tribal leaking storage tank lists

SLIC...... Statewide SLIC Cases INDIAN LUST...... Leaking Underground Storage Tanks on Indian Land

State and tribal registered storage tank lists

UST..... Active UST Facilities

AST	Aboveground Petroleum Storage Tank Facilities
	. Underground Storage Tanks on Indian Land
FEMA UST	Underground Storage Tank Listing

State and tribal voluntary cleanup sites

VCP...... Voluntary Cleanup Program Properties INDIAN VCP....... Voluntary Cleanup Priority Listing

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS..... A Listing of Brownfields Sites

Local Lists of Landfill / Solid Waste Disposal Sites

DEBRIS REGION 9	Torres Martinez Reservation Illegal Dump Site Locations
ODI	Open Dump Inventory
WMUDS/SWAT	Waste Management Unit Database
SWRCY	Recycler Database
HAULERS	Registered Waste Tire Haulers Listing
INDIAN ODI	

Local Lists of Hazardous waste / Contaminated Sites

US CDL	Clandestine Drug Labs
HIST Cal-Sites	Historical Calsites Database
SCH	School Property Evaluation Program
Toxic Pits	Toxic Pits Cleanup Act Sites
CDL	Clandestine Drug Labs
US HIST CDL	National Clandestine Laboratory Register

Local Lists of Registered Storage Tanks

CA FID UST	Facility Inventory Database
SWEEPS UST	SWEEPS UST Listing

Local Land Records

LIENS 2	CERCLA Lien Information
LUCIS	Land Use Control Information System
LIENS	Environmental Liens Listing
DEED	Deed Restriction Listing

Records of Emergency Release Reports

HMIRS	Hazardous Materials Information Reporting System
CHMIRS	California Hazardous Material Incident Report System
LDS	Land Disposal Sites Listing
MCS	Military Cleanup Sites Listing

Other Ascertainable Records

RCRA-NonGen_____ RCRA - Non Generators

	Insident and Assident Data
DOT OPS	
	Department of Defense Sites
	Formerly Used Defense Sites
	_ Superfund (CERCLA) Consent Decrees
ROD.	
UMTRA MINES	_ Oranium Mill Tallings Siles
	Toxic Chemical Release Inventory System Toxic Substances Control Act
	FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide
	Act)/TSCA (Toxic Substances Control Act)
	- FIFRA/TSCA Tracking System Administrative Case Listing
	Section 7 Tracking Systems
	Integrated Compliance Information System
	PCB Activity Database System
	_ Material Licensing Tracking System
	Radiation Information Database
	Facility Index System/Facility Registry System
	RCRA Administrative Action Tracking System
CA BOND EXP. PLAN	
WDS	Waste Discharge System
NPDES	
	"Cortese" Hazardous Waste & Substances Sites List
Notify 65	
	- Well Investigation Program Case List
HAZNET	- Facility and Manifest Data
INDIAN RESERV	Indian Reservations
	. State Coalition for Remediation of Drycleaners Listing
	EnviroStor Permitted Facilities Listing
	Registered Hazardous Waste Transporter Database
	Coal Combustion Residues Surface Impoundments List
	- Financial Assurance Information Listing
PUB TRANSFORMER	PCB Transformer Registration Database
	Certified Processors Database
	_ Medical Waste Management Program Listing
COAL ASH DOE	. Sleam-Electric Plan Operation Data

EDR PROPRIETARY RECORDS

EDR Proprietary Records

Manufactured Gas Plants..... EDR Proprietary Manufactured Gas Plants EDR Historical Auto Stations... EDR Proprietary Historic Gas Stations EDR Historical Cleaners...... EDR Proprietary Historic Dry Cleaners

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

STANDARD ENVIRONMENTAL RECORDS

State- and tribal - equivalent CERCLIS

ENVIROSTOR: The Department of Toxic Substances Control's (DTSC's) Site Mitigation and Brownfields Reuse Program's (SMBRP's) EnviroStor database identifes sites that have known contamination or sites for which there may be reasons to investigate further. The database includes the following site types: Federal Superfund sites (National Priorities List (NPL)); State Response, including Military Facilities and State Superfund; Voluntary Cleanup; and School sites. EnviroStor provides similar information to the information that was available in CalSites, and provides additional site information, including, but not limited to, identification of formerly-contaminated properties that have been released for reuse, properties where environmental deed restrictions have been recorded to prevent inappropriate land uses, and risk characterization information that is used to assess potential impacts to public health and the environment at contaminated sites.

A review of the ENVIROSTOR list, as provided by EDR, and dated 06/15/2011 has revealed that there is 1 ENVIROSTOR site within approximately 1 mile of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
HIGHLAND TRAILS Status: No Further Action	25329 SECOND STREET	SW 1/2 - 1 (0.649 mi.)	4	11

State and tribal leaking storage tank lists

LUST: The Leaking Underground Storage Tank Incident Reports contain an inventory of reported leaking underground storage tank incidents. The data come from the State Water Resources Control Board Leaking Underground Storage Tank Information System.

A review of the LUST list, as provided by EDR, and dated 06/20/2011 has revealed that there is 1 LUST site within approximately 0.5 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
FAIRVIEW FIRE DEPARTMENT	24200 FAIRVIEW AVE	WNW 1/4 - 1/2 (0.326 mi.)	A3	9
Status: Completed - Case Closed				

Alameda County CS: A listing of contaminated sites overseen by the Toxic Release Program (oil and groundwater contamination from chemical releases and spills) and the Leaking Underground Storage Tank Program (soil and ground water contamination from leaking petroleum USTs).

A review of the Alameda County CS list, as provided by EDR, and dated 04/12/2011 has revealed that there is 1 Alameda County CS site within approximately 0.5 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
FAIRVIEW FIRE DEPARTMENT	24200 FAIRVIEW AVE	WNW 1/4 - 1/2 (0.326 mi.)	A3	9

ADDITIONAL ENVIRONMENTAL RECORDS

Local Lists of Registered Storage Tanks

HIST UST: Historical UST Registered Database.

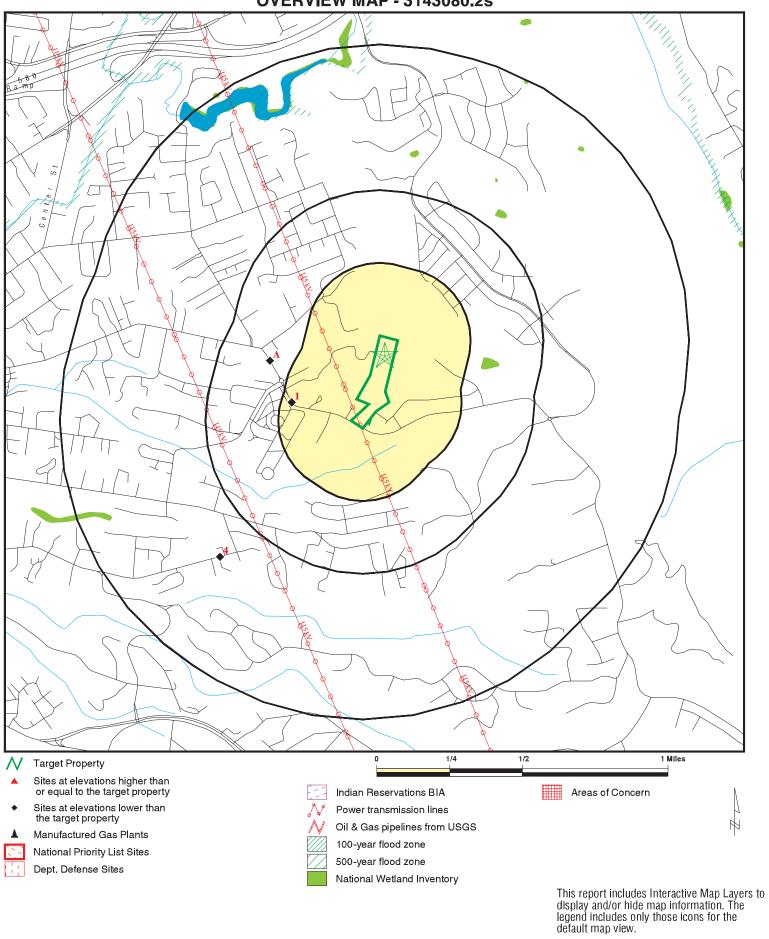
A review of the HIST UST list, as provided by EDR, and dated 10/15/1990 has revealed that there is 1 HIST UST site within approximately 0.25 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
LONE TREE CEMETERY	24591 FAIRVIEW AVE	WNW 1/8 - 1/4 (0.213 mi.)	1	8

Other Ascertainable Records

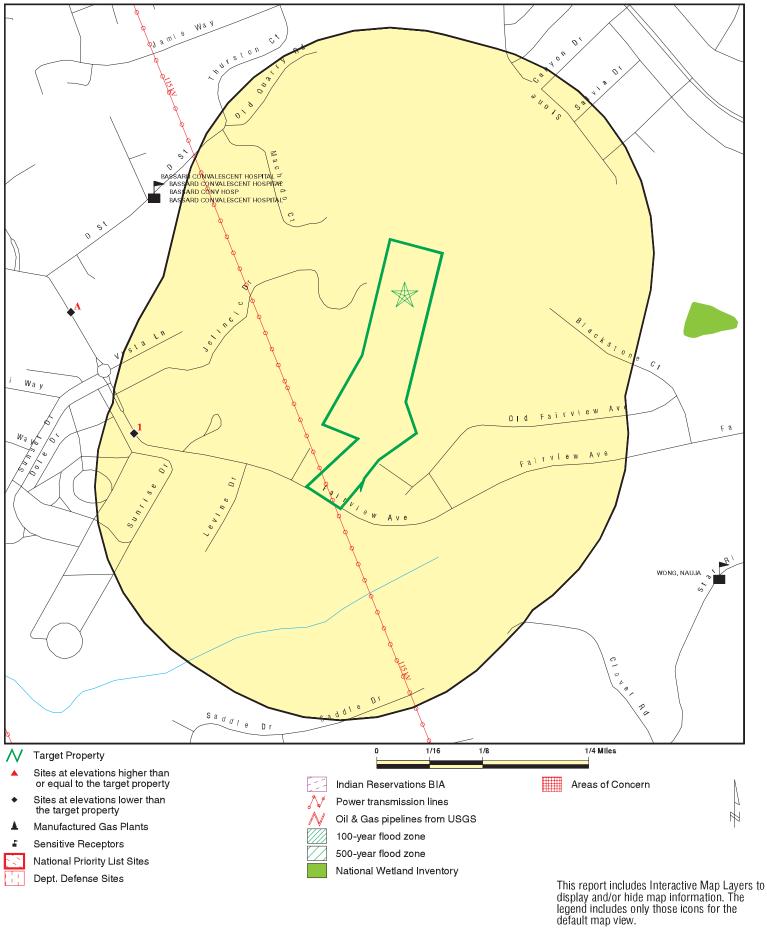
HIST CORTESE: The sites for the list are designated by the State Water Resource Control Board [LUST], the Integrated Waste Board [SWF/LS], and the Department of Toxic Substances Control [CALSITES].

A review of the HIST CORTESE list, as provided by EDR, and dated 04/01/2001 has revealed that there is 1 HIST CORTESE site within approximately 0.5 miles of the target property.


Lower Elevation	Address	Direction / Distance	Map ID	Page
FAIRVIEW FIRE DEPARTMENT	24200 FAIRVIEW	WNW 1/4 - 1/2 (0.326 mi.)	A2	8

Due to poor or inadequate address information, the following sites were not mapped. Count: 3 records.

Site Name


EDEN ROCK PROPS ARDEN ROAD PROPERTY BAY CITIES RUBBISH DSPL CO Database(s)

CERC-NFRAP CERC-NFRAP CERC-NFRAP OVERVIEW MAP - 3143080.2s

	24850 Fairview Avenue	CLIENT: Lamphier-Gregory CONTACT: Nathaniel Taylor
LAT/LONG:	, , , , , , , , , , , , , , , , , , ,	INQUIRY #: 3143080.2s DATE: August 08, 2011 7:05 pm

DETAIL MAP - 3143080.2s

ADDRESS:24850 Fairview Avenue Hayward CA 94542CONTACT:Nathaniel Taylor INQUIRY #:LAT/LONG:37.6784 / 122.0425DATE:August 08, 20117:06 pm	ADDRESS:	Hayward CA 94542	
---	----------	------------------	--

Database	Target Property	Search Distance (Miles)	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
STANDARD ENVIRONMEN	TAL RECORDS							
Federal NPL site list								
NPL Proposed NPL NPL LIENS		1.000 1.000 TP	0 0 NR	0 0 NR	0 0 NR	0 0 NR	NR NR NR	0 0 0
Federal Delisted NPL sit	te list							
Delisted NPL		1.000	0	0	0	0	NR	0
Federal CERCLIS list								
CERCLIS FEDERAL FACILITY		0.500 1.000	0 0	0 0	0 0	NR 0	NR NR	0 0
Federal CERCLIS NFRA	P site List							
CERC-NFRAP		0.500	0	0	0	NR	NR	0
Federal RCRA CORRAC	TS facilities li	st						
CORRACTS		1.000	0	0	0	0	NR	0
Federal RCRA non-COR	RACTS TSD f	acilities list						
RCRA-TSDF		0.500	0	0	0	NR	NR	0
Federal RCRA generato	rs list							
RCRA-LQG RCRA-SQG RCRA-CESQG		0.250 0.250 0.250	0 0 0	0 0 0	NR NR NR	NR NR NR	NR NR NR	0 0 0
Federal institutional cor engineering controls reg								
US ENG CONTROLS US INST CONTROL		0.500 0.500	0 0	0 0	0 0	NR NR	NR NR	0 0
Federal ERNS list								
ERNS		TP	NR	NR	NR	NR	NR	0
State- and tribal - equiva	alent NPL							
RESPONSE		1.000	0	0	0	0	NR	0
State- and tribal - equiva	alent CERCLIS	6						
ENVIROSTOR		1.000	0	0	0	1	NR	1
State and tribal landfill a solid waste disposal site								
SWF/LF		0.500	0	0	0	NR	NR	0
State and tribal leaking	storage tank l	ists						
LUST SLIC		0.500 0.500	0 0	0 0	1 0	NR NR	NR NR	1 0

Database	Target Property	Search Distance (Miles)	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
Alameda County CS INDIAN LUST		0.500 0.500	0 0	0 0	1 0	NR NR	NR NR	1 0
State and tribal register	ed storage tai	nk lists						
UST AST INDIAN UST FEMA UST		0.250 0.250 0.250 0.250	0 0 0	0 0 0 0	NR NR NR NR	NR NR NR NR	NR NR NR NR	0 0 0 0
State and tribal volunta	ry cleanup sit	es						
VCP INDIAN VCP		0.500 0.500	0 0	0 0	0 0	NR NR	NR NR	0 0
ADDITIONAL ENVIRONME	NTAL RECORD	s						
		_						
Local Brownfield lists		0 500	0	0	0			
US BROWNFIELDS Local Lists of Landfill /	Solid	0.500	0	0	0	NR	NR	0
Waste Disposal Sites	30110							
DEBRIS REGION 9 ODI WMUDS/SWAT SWRCY HAULERS INDIAN ODI		0.500 0.500 0.500 0.500 TP 0.500	0 0 0 NR 0	0 0 0 NR 0	0 0 0 NR 0	NR NR NR NR NR NR	NR NR NR NR NR	0 0 0 0 0
Local Lists of Hazardou Contaminated Sites	is waste /		-	-	-			-
US CDL HIST Cal-Sites SCH Toxic Pits CDL US HIST CDL		TP 1.000 0.250 1.000 TP TP	NR 0 0 NR NR	NR 0 0 NR NR	NR 0 NR 0 NR NR	NR 0 NR 0 NR NR	NR NR NR NR NR	0 0 0 0 0 0
Local Lists of Registere	ed Storage Tar	nks						
CA FID UST HIST UST SWEEPS UST		0.250 0.250 0.250	0 0 0	0 1 0	NR NR NR	NR NR NR	NR NR NR	0 1 0
Local Land Records								
LIENS 2 LUCIS LIENS DEED		TP 0.500 TP 0.500	NR 0 NR 0	NR 0 NR 0	NR 0 NR 0	NR NR NR NR	NR NR NR NR	0 0 0 0
Records of Emergency	Release Repo	orts						
HMIRS CHMIRS		TP TP	NR NR	NR NR	NR NR	NR NR	NR NR	0 0

Database	Target Property	Search Distance (Miles)	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
LDS MCS		TP TP	NR NR	NR NR	NR NR	NR NR	NR NR	0 0
Other Ascertainable Rec	ords							
RCRA-NonGen		0.250	0	0	NR	NR	NR	0
DOT OPS		TP	NR	NR	NR	NR	NR	0
DOD		1.000	0	0	0	0	NR	0
FUDS CONSENT		1.000 1.000	0 0	0 0	0 0	0 0	NR NR	0 0
ROD		1.000	0	0	0	0	NR	0
UMTRA		0.500	0	ŏ	ŏ	NR	NR	ŏ
MINES		0.250	Ō	0	NR	NR	NR	0
TRIS		TP	NR	NR	NR	NR	NR	0
TSCA		TP	NR	NR	NR	NR	NR	0
FTTS		TP	NR	NR	NR	NR	NR	0
HIST FTTS		TP	NR	NR	NR	NR	NR	0
SSTS ICIS		TP TP	NR NR	NR NR	NR NR	NR NR	NR NR	0 0
PADS		TP	NR	NR	NR	NR	NR	0
MLTS		TP	NR	NR	NR	NR	NR	ŏ
RADINFO		TP	NR	NR	NR	NR	NR	0
FINDS		TP	NR	NR	NR	NR	NR	0
RAATS		TP	NR	NR	NR	NR	NR	0
CA BOND EXP. PLAN		1.000	0	0	0	0	NR	0
WDS NPDES		TP TP	NR	NR	NR	NR	NR	0
Cortese		0.500	NR 0	NR 0	NR 0	NR NR	NR NR	0 0
HIST CORTESE		0.500	0	0	1	NR	NR	1
Notify 65		1.000	Õ	õ	Ö	0	NR	Ö
DRYCLEANERS		0.250	0	0	NR	NR	NR	0
WIP		0.250	0	0	NR	NR	NR	0
HAZNET		TP	NR	NR	NR	NR	NR	0
		TP	NR	NR	NR	NR	NR	0
INDIAN RESERV SCRD DRYCLEANERS		1.000 0.500	0 0	0 0	0 0	0 NR	NR NR	0 0
HWP		1.000	0	0	0	0	NR	0
HWT		0.250	0	Ő	NR	NR	NR	0
COAL ASH EPA		0.500	Õ	Õ	0	NR	NR	Õ
FINANCIAL ASSURANCE		TP	NR	NR	NR	NR	NR	0
PCB TRANSFORMER		TP	NR	NR	NR	NR	NR	0
PROC		0.500	0	0	0	NR	NR	0
MWMP		0.250	0	0	NR	NR	NR	0
COAL ASH DOE		TP	NR	NR	NR	NR	NR	0
EDR PROPRIETARY RECOR	RDS							
EDR Proprietary Records	5							
Manufactured Gas Plants		1.000	0	0	0	0	NR	0
EDR Historical Auto Statio	ns	0.250	0	0	NR	NR	NR	0
EDR Historical Cleaners		0.250	0	0	NR	NR	NR	0

		Search						
	Target	Distance						Total
Database	Property	(Miles)	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Plotted

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

Database(s)

EDR ID Number EPA ID Number

1 WNW 1/8-1/4	LONE TREE CEMETERY 24591 FAIRVIEW AVE HAYWARD, CA 94542	,	HIST UST HAZNET	U001597028 N/A
0.213 mi.				
1125 ft. Relative: Lower	HIST UST: Region:	STATE		
Actual: 495 ft.	Facility ID: Facility Type: Other Type: Total Tanks: Contact Name: Telephone: Owner Name: Owner Address: Owner City,St,Zip: Tank Num:	00000056968 Other CEMETERY 0001 ALAN C. JENSEN 4155821274 LONE TREE CEMETERY ASSOCIATION 24591 FAIRVIEW AVE. HAYWARD, CA 94542 001		
	Container Num: Year Installed: Tank Capacity: Tank Used for:	1 1971 00000550 PRODUCT		
	Type of Fuel: Tank Construction: Leak Detection:	REGULAR Not reported None		
	HAZNET:			
	Year: Gepaid: Contact: Telephone: Mailing Name: Mailing Address: Mailing City,St,Zip: Gen County: TSD EPA ID: TSD County: Waste Category: Disposal Method: Tons: Facility County:	2001 CAL000180126 THOMAS GRATNY GEN MGR 5105821274 Not reported 24591 FAIRVIEW AVE HAYWARD, CA 945420000 Alameda Not reported Santa Clara Unspecified oil-containing waste H01 0.1 Not reported		
A2 WNW 1/4-1/2 0.326 mi. 1719 ft.	FAIRVIEW FIRE DEPAR 24200 FAIRVIEW HAYWARD, CA 94541 Site 1 of 2 in cluster A	TMENT HIS	ST CORTESE HAZNET	S103956979 N/A
Relative: Lower	CORTESE: Region: Facility County Code	CORTESE e: 1		
Actual: 449 ft.	Reg By: Reg Id:	LTNKA 01-2494		
	-			
	HAZNET: Year: Gepaid: Contact:	1998 CAC002127672 CITY OF HAYWARD		

Α3

MAP FINDINGS

Database(s)

EDR ID Number **EPA ID Number**

FAIRVIEW FIRE DEPARTMENT (Continued)

FAIRVIEW FIRE DEPARTMENT

Organization Name:

Phone Number:

Contact Name:

Phone Number:

Organization Name:

Address:

Global Id: Contact Type:

Address:

City:

Email:

City:

Email:

Telephone: 5107326444 Mailing Name: Not reported Mailing Address: 24200 FAIRVIEW AVE Mailing City, St, Zip: HAYWARD, CA 945410000 Gen County: 1 TSD EPA ID: CAD009466392 TSD County: 7 Waste Category: Other empty containers 30 gallons or more **Disposal Method:** D99 Tons: .1500 Facility County: 1

S103956979

U001596984 LUST Alameda County CS IST UST

N/A

	WNW 1/4-1/2 0.326 mi. 1719 ft.	24200 FAIRVIEW AVE HAYWARD, CA 94541 Site 2 of 2 in cluster A	Alameda Co H	ou IIS
1	Relative:	LUST:		
	Lower	Region:	STATE	
		Global Id:	T0600102295	
	Actual:	Latitude:	37.6780929	
4	449 ft.	Longitude:	-122.049415	
		Case Type:	LUST Cleanup Site	
		Status:	Completed - Case Closed	
		Status Date:	2000-03-09 00:00:00	
		Lead Agency:	ALAMEDA COUNTY LOP	
		Case Worker:	SOS	
		Local Agency:	ALAMEDA COUNTY LOP	
		RB Case Number:	01-2494	
		LOC Case Number:	RO0000846	
		File Location:	Stored electronically as an E-file	
		Potential Media Affect:	Other Groundwater (uses other than drinking water)	
		Potential Contaminants of Concern:	Diesel	
		Site History:	Not reported	
		Click here to access the California G	eoTracker records for this facility:	
		LUST:		
		Global Id:	T0600102295	
		Contact Type:	Regional Board Caseworker	
		Contact Name:	Cherie McCaulou	

OAKLAND

Not reported T0600102295

SCOTT SEERY

ALAMEDA

Not reported

Not reported

SAN FRANCISCO BAY RWQCB (REGION 2)

1515 CLAY STREET, SUITE 1400

cmccaulou@waterboards.ca.gov

Local Agency Caseworker

ALAMEDA COUNTY LOP

1131 HARBOR BAY PARKWAY

Remove free product

Database(s)

EDR ID Number EPA ID Number

FAIRVIEW FIRE DEPARTMENT (Continued)

LUST: Global Id: Action Type: Date: Action:	T0600102295 Other 1950-01-01 00:00:00 Leak Reported
Global ld:	T0600102295
Action Type:	REMEDIATION
Date:	1950-01-01 00:00:00

LUST REG 2:

Action:

Region:	2	
Facility Id:	01-2494	
Facility Status:	Case Closed	
Case Number:	4115	
How Discovered:	Tank Closure	
Leak Cause:	UNK	
Leak Source:	UNK	
Date Leak Confirmed:	5/13/1999	
Oversight Program:	LUST	
Prelim. Site Assesment	Wokplan Submitted:	Not reported
Preliminary Site Assesm	nent Began:	Not reported
Pollution Characterizatio	on Began:	Not reported
Pollution Remediation P	lan Submitted:	Not reported
Date Remediation Action	n Underway:	Not reported
Date Post Remedial Act	ion Monitoring Began:	Not reported

Alameda County CS:

Status:	Case Closed
Record Id:	RO0000846
PE:	5602

HIST UST:

Region: Facility ID:	STATE 00000030103
Facility Type:	Other
Other Type:	FIRE DEPARTMENT
Total Tanks:	0001
Contact Name:	CHIEF YUNGHANS
Telephone:	4158816056
Owner Name:	FAIRVIEW FIRE PROTECTION DISTR
Owner Address:	24200 FAIRVIEW AVENUE
Owner City,St,Zip:	HAYWARD, CA 94541
Tank Num:	001
Container Num:	1

Container Num.	1
Year Installed:	1975
Tank Capacity:	00001000
Tank Used for:	PRODUCT
Type of Fuel:	PREMIUM
Tank Construction:	Not reported
Leak Detection:	Visual

U001596984

Database(s)

EDR ID Number EPA ID Number

4 SW 1/2-1 0.649 mi. 3426 ft.	HIGHLAND TRAILS 25329 SECOND STREET HAYWARD, CA 94541		VCP ENVIROSTOR	S108484727 N/A
5420 11.				
Relative:	VCP:			
Lower	Facility ID:	60000612		
Actual	Site Type:	Voluntary Cleanup		
Actual: 440 ft.	Site Type Detail:	Voluntary Cleanup		
440 11.	Site Mgmt. Req.:	NONE SPECIFIED		
	Acres:	7.1		
	National Priorities List: Cleanup Oversight Agencies:	NO SMBRP		
	Lead Agency:	SMBRP		
	Lead Agency Description:	DTSC - Site Mitigation And Brownfield Reuse Program		
	Project Manager:	XAVIER BRYANT		
	Supervisor:	Denise Tsuji		
	Division Branch:	Cleanup Berkeley		
	Site Code:	201739		
	Assembly:	20		
	Senate:	10		
	Special Programs Code:	Not reported		
	Status:	No Further Action		
	Status Date:	2007-07-12 00:00:00		
	Restricted Use:	NO		
	Funding:	Responsible Party		
	Lat/Long:	37.668173416589603 / -122.05177084685801		
	APN:	0425-160-006-01, 0425-160-006-02, 0425-160-006-02, 04	425-160-007-01,	
	Destilles			
	Past Use:	AGRICULTURAL - LIVESTOCK, ILLEGAL DUMPING		
	Potential COC: Confirmed COC:	30001, 30024, 3002502		
	Potential Description:	30024,30001,3002502 SOIL		
	Alias Name:	Creekside Highlands		
	Alias Type:	Alternate Name		
	Alias Name:	Van Eeghen Property		
	Alias Type:	Alternate Name		
	Alias Name:	0425-160-006-01		
	Alias Type:	APN		
	Alias Name:	0425-160-006-02		
	Alias Type:	APN		
	Alias Name:	0425-160-006-02		
	Alias Type:	APN		
	Alias Name:	0425-160-007-01		
	Alias Type:	APN		
	Alias Name:	425-160-7-8		
	Alias Type:	APN		
	Alias Name:	Vesting Tentative Tract Map TR-7270		
	Alias Type:	Former Project ID		
	Alias Name: Alias Type:	110033613953 EPA (ERS #)		
	Alias Type: Alias Name:	EPA (FRS #) 201739		
	Alias Name. Alias Type:	Project Code (Site Code)		
	Alias Name:	60000611		
	Alias Type:	Envirostor ID Number		
	Alias Name:	60000612		
	Alias Type:	Envirostor ID Number		

Database(s)

EDR ID Number EPA ID Number

HIGHLAND TRAILS (Continued)

S108484727

Completed Info:	PROJECT WIDE
Completed Area Name:	Not reported
Completed Sub Area Name:	Site Characterization Report
Completed Document Type:	2004-04-29 00:00:00
Completed Date:	Groundwater Report submitted as part of the historical file. Report
Comments:	was not prepared for or approved by DTSC.
Completed Area Name:	PROJECT WIDE
Completed Sub Area Name:	Not reported
Completed Document Type:	Site Characterization Report
Completed Date:	2007-07-12 00:00:00
Comments:	Not reported
Completed Area Name:	PROJECT WIDE
Completed Sub Area Name:	Not reported
Completed Document Type:	Application
Completed Date:	2007-04-11 00:00:00
Comments:	Project was assigned to DTSC through the MOA process.
Completed Area Name: Completed Sub Area Name: Completed Document Type: Completed Date: Comments:	PROJECT WIDE Not reported Phase 1 2000-07-13 00:00:00 Phase I submitted to DTSC as part of the historical file. Document was not prepared for DTSC.
Completed Area Name: Completed Sub Area Name: Completed Document Type: Completed Date: Comments:	PROJECT WIDE Not reported Site Characterization Report 2000-09-19 00:00:00 Phase II Report submitted as part of the historical file. Report was not prepared for or approved by DTSC.
Completed Area Name: Completed Sub Area Name: Completed Document Type: Completed Date: Comments:	PROJECT WIDE Not reported Site Characterization Report 2000-08-22 00:00:00 Soil Sampling Report submitted as part of the historical file. Report was not prepared for or approved by DTSC.
Completed Area Name:	PROJECT WIDE
Completed Sub Area Name:	Not reported
Completed Document Type:	Voluntary Cleanup Agreement
Completed Date:	2007-05-08 00:00:00
Comments:	VCA executed.
Completed Area Name:	PROJECT WIDE
Completed Sub Area Name:	Not reported
Completed Document Type:	CEQA - Initial Study/ Environmental Impact Report
Completed Date:	2006-02-28 00:00:00
Comments:	EIR completed prior to Oversight Agreement with DTSC.
Future Area Name:	Not reported
Future Sub Area Name:	Not reported
Future Document Type:	Not reported
Future Due Date:	Not reported

Database(s)

EDR ID Number EPA ID Number

HIGHLAND TRAILS (Continued)

Schedule Area Name: Schedule Sub Area Nam Schedule Document Type Schedule Due Date: Schedule Revised Date:	
ENVIROSTOR: Site Type:	Voluntary Cleanup

INVIRUSTOR:	
Site Type:	Voluntary Cleanup
Site Type Detailed:	Voluntary Cleanup
Acres:	7.1
NPL:	NO
Regulatory Agencies:	SMBRP
Lead Agency:	SMBRP
Program Manager:	XAVIER BRYANT
Supervisor:	Denise Tsuji
Division Branch:	Cleanup Berkeley
Facility ID:	60000612
Site Code:	201739
Assembly:	20
Senate:	10
Special Program:	Not reported
Status:	No Further Action
Status Date:	2007-07-12 00:00:00
Restricted Use:	NO
Site Mgmt. Req.:	NONE SPECIFIED
Funding:	Responsible Party
Latitude:	37.668173416589603
Longitude:	-122.05177084685801
APN:	0425-160-006-01, 0425-160-006-02, 0425-160-006-02, 0425-160-007-01,
	425-160-7-8
Past Use:	AGRICULTURAL - LIVESTOCK, ILLEGAL DUMPING
Potential COC:	30001, 30024, 3002502
Confirmed COC:	30024,30001,3002502
Potential Description:	SOIL
Alias Name:	Creekside Highlands
Alias Type:	Alternate Name
Alias Name:	Van Eeghen Property
Alias Type:	Alternate Name
Alias Name:	0425-160-006-01
Alias Type:	APN
Alias Name:	0425-160-006-02
Alias Type:	APN
Alias Name:	0425-160-006-02
Alias Type:	APN
Alias Name:	0425-160-007-01
Alias Type:	APN
Alias Name:	425-160-7-8
Alias Type:	APN
Alias Name:	Vesting Tentative Tract Map TR-7270
Alias Type:	Former Project ID
Alias Name:	110033613953
Alias Type:	EPA (FRS #)
Alias Name:	201739
Alias Type:	Project Code (Site Code)
Alias Name:	60000611
Alias Type:	Envirostor ID Number
Alias Name:	60000612

Database(s)

EDR ID Number EPA ID Number

HIGHLAND TRAILS (Continued)		S108484727
Alias Type:	Envirostor ID Number	
Completed Info: Completed Area Name: Completed Sub Area Name: Completed Document Type: Completed Date: Comments:	PROJECT WIDE Not reported Site Characterization Report 2004-04-29 00:00:00 Groundwater Report submitted as part of the historical file. Report was not prepared for or approved by DTSC.	
Completed Area Name: Completed Sub Area Name: Completed Document Type: Completed Date: Comments:	PROJECT WIDE Not reported Site Characterization Report 2007-07-12 00:00:00 Not reported	
Completed Area Name: Completed Sub Area Name: Completed Document Type: Completed Date: Comments:	PROJECT WIDE Not reported Application 2007-04-11 00:00:00 Project was assigned to DTSC through the MOA process.	
Completed Area Name: Completed Sub Area Name: Completed Document Type: Completed Date: Comments:	PROJECT WIDE Not reported Phase 1 2000-07-13 00:00:00 Phase I submitted to DTSC as part of the historical file. Document was not prepared for DTSC.	
Completed Area Name: Completed Sub Area Name: Completed Document Type: Completed Date: Comments:	PROJECT WIDE Not reported Site Characterization Report 2000-09-19 00:00:00 Phase II Report submitted as part of the historical file. Report was not prepared for or approved by DTSC.	
Completed Area Name: Completed Sub Area Name: Completed Document Type: Completed Date: Comments:	PROJECT WIDE Not reported Site Characterization Report 2000-08-22 00:00:00 Soil Sampling Report submitted as part of the historical file. Report was not prepared for or approved by DTSC.	
Completed Area Name: Completed Sub Area Name: Completed Document Type: Completed Date: Comments:	PROJECT WIDE Not reported Voluntary Cleanup Agreement 2007-05-08 00:00:00 VCA executed.	
Completed Area Name: Completed Sub Area Name: Completed Document Type: Completed Date: Comments:	PROJECT WIDE Not reported CEQA - Initial Study/ Environmental Impact Report 2006-02-28 00:00:00 EIR completed prior to Oversight Agreement with DTSC.	
Future Area Name: Future Sub Area Name: Future Document Type:	Not reported Not reported Not reported	

Database(s)

EDR ID Number EPA ID Number

HIGHLAND TRAILS (Continued)

Future Due Date:	Not reported
Schedule Area Name:	Not reported
Schedule Sub Area Name:	Not reported
Schedule Document Type:	Not reported
Schedule Due Date:	Not reported
Schedule Revised Date:	Not reported

S108484727

Count: 3 records.

ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)
HAYWARD 1	1003879275	EDEN ROCK PROPS ARDEN ROAD PROPERTY BAY CITIES RUBBISH DSPL CO	3146, 3167 & 3191 CORPORATE PL ARDEN RD FOOT OF W WINTON AVE	94541	CERC-NFRAP CERC-NFRAP CERC-NFRAP

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Number of Days to Update: Provides confirmation that EDR is reporting records that have been updated within 90 days from the date the government agency made the information available to the public.

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list

NPL: National Priority List

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 03/31/2011 Date Data Arrived at EDR: 04/13/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 62 Source: EPA Telephone: N/A Last EDR Contact: 07/12/2011 Next Scheduled EDR Contact: 10/24/2011 Data Release Frequency: Quarterly

NPL Site Boundaries

Sources:

EPA's Environmental Photographic Interpretation Center (EPIC) Telephone: 202-564-7333

EPA Region 1 Telephone 617-918-1143

EPA Region 3 Telephone 215-814-5418

EPA Region 4 Telephone 404-562-8033

EPA Region 5 Telephone 312-886-6686

EPA Region 10 Telephone 206-553-8665

Proposed NPL: Proposed National Priority List Sites

A site that has been proposed for listing on the National Priorities List through the issuance of a proposed rule in the Federal Register. EPA then accepts public comments on the site, responds to the comments, and places on the NPL those sites that continue to meet the requirements for listing.

EPA Region 6

EPA Region 7

EPA Region 8

EPA Region 9

Telephone: 214-655-6659

Telephone: 913-551-7247

Telephone: 303-312-6774

Telephone: 415-947-4246

Date of Government Version: 03/31/2011 Date Data Arrived at EDR: 04/13/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 62 Source: EPA Telephone: N/A Last EDR Contact: 07/12/2011 Next Scheduled EDR Contact: 10/24/2011 Data Release Frequency: Quarterly

NPL LIENS: Federal Superfund Liens

Federal Superfund Liens. Under the authority granted the USEPA by CERCLA of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner received notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/1991 Date Data Arrived at EDR: 02/02/1994 Date Made Active in Reports: 03/30/1994 Number of Days to Update: 56 Source: EPA Telephone: 202-564-4267 Last EDR Contact: 05/16/2011 Next Scheduled EDR Contact: 08/29/2011 Data Release Frequency: No Update Planned

Federal Delisted NPL site list

DELISTED NPL: National Priority List Deletions

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate.

Date of Government Version: 03/31/2011 Date Data Arrived at EDR: 04/13/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 62 Source: EPA Telephone: N/A Last EDR Contact: 07/12/2011 Next Scheduled EDR Contact: 10/24/2011 Data Release Frequency: Quarterly

Federal CERCLIS list

CERCLIS: Comprehensive Environmental Response, Compensation, and Liability Information System CERCLIS contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). CERCLIS contains sites which are either proposed to or on the National Priorities List (NPL) and sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 02/25/2011 Date Data Arrived at EDR: 03/01/2011 Date Made Active in Reports: 05/02/2011 Number of Days to Update: 62 Source: EPA Telephone: 703-412-9810 Last EDR Contact: 06/14/2011 Next Scheduled EDR Contact: 09/12/2011 Data Release Frequency: Quarterly

FEDERAL FACILITY: Federal Facility Site Information listing

A listing of National Priority List (NPL) and Base Realignment and Closure (BRAC) sites found in the Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Database where EPAa??s Federal Facilities Restoration and Reuse Office is involved in cleanup activities.

Date of Government Version: 12/10/2010 Date Data Arrived at EDR: 01/11/2011 Date Made Active in Reports: 02/16/2011 Number of Days to Update: 36 Source: Environmental Protection Agency Telephone: 703-603-8704 Last EDR Contact: 07/15/2011 Next Scheduled EDR Contact: 10/24/2011 Data Release Frequency: Varies

Federal CERCLIS NFRAP site List

CERCLIS-NFRAP: CERCLIS No Further Remedial Action Planned

Archived sites are sites that have been removed and archived from the inventory of CERCLIS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list this site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. This decision does not necessarily mean that there is no hazard associated with a given site; it only means that, based upon available information, the location is not judged to be a potential NPL site.

Date of Government Version: 02/25/2011 Date Data Arrived at EDR: 03/01/2011 Date Made Active in Reports: 05/02/2011 Number of Days to Update: 62 Source: EPA Telephone: 703-412-9810 Last EDR Contact: 06/14/2011 Next Scheduled EDR Contact: 09/12/2011 Data Release Frequency: Quarterly

Federal RCRA CORRACTS facilities list

CORRACTS: Corrective Action Report

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 03/09/2011 Date Data Arrived at EDR: 03/15/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 91 Source: EPA Telephone: 800-424-9346 Last EDR Contact: 05/16/2011 Next Scheduled EDR Contact: 08/29/2011 Data Release Frequency: Quarterly

Federal RCRA non-CORRACTS TSD facilities list

RCRA-TSDF: RCRA - Treatment, Storage and Disposal

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Transporters are individuals or entities that move hazardous waste from the generator offsite to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

Date of Government Version: 06/15/2011 Date Data Arrived at EDR: 07/07/2011 Date Made Active in Reports: 08/08/2011 Number of Days to Update: 32 Source: Environmental Protection Agency Telephone: (415) 495-8895 Last EDR Contact: 07/07/2011 Next Scheduled EDR Contact: 10/17/2011 Data Release Frequency: Quarterly

Federal RCRA generators list

RCRA-LQG: RCRA - Large Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month.

Date of Government Version: 06/15/2011 Date Data Arrived at EDR: 07/07/2011 Date Made Active in Reports: 08/08/2011 Number of Days to Update: 32 Source: Environmental Protection Agency Telephone: (415) 495-8895 Last EDR Contact: 07/07/2011 Next Scheduled EDR Contact: 10/17/2011 Data Release Frequency: Quarterly

RCRA-SQG: RCRA - Small Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month.

Date of Government Version: 06/15/2011 Date Data Arrived at EDR: 07/07/2011 Date Made Active in Reports: 08/08/2011 Number of Days to Update: 32 Source: Environmental Protection Agency Telephone: (415) 495-8895 Last EDR Contact: 07/07/2011 Next Scheduled EDR Contact: 10/17/2011 Data Release Frequency: Quarterly

RCRA-CESQG: RCRA - Conditionally Exempt Small Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

Date of Government Version: 06/15/2011 Date Data Arrived at EDR: 07/07/2011 Date Made Active in Reports: 08/08/2011 Number of Days to Update: 32 Source: Environmental Protection Agency Telephone: (415) 495-8895 Last EDR Contact: 07/07/2011 Next Scheduled EDR Contact: 10/17/2011 Data Release Frequency: Varies

Federal institutional controls / engineering controls registries

US ENG CONTROLS: Engineering Controls Sites List

A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health.

Date of Government Version: 03/16/2011	Source: Environmental Protection Agency
Date Data Arrived at EDR: 03/25/2011	Telephone: 703-603-0695
Date Made Active in Reports: 06/14/2011	Last EDR Contact: 08/08/2011
Number of Days to Update: 81	Next Scheduled EDR Contact: 09/26/2011
	Data Release Frequency: Varies

US INST CONTROL: Sites with Institutional Controls

A listing of sites with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

Date of Government Version: 03/16/2011 Date Data Arrived at EDR: 03/25/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 81

Source: Environmental Protection Agency Telephone: 703-603-0695 Last EDR Contact: 08/08/2011 Next Scheduled EDR Contact: 09/26/2011 Data Release Frequency: Varies

Federal ERNS list

ERNS: Emergency Response Notification System

Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous substances.

Date of Government Version: 04/05/2011 Date Data Arrived at EDR: 04/05/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 70

Source: National Response Center, United States Coast Guard Telephone: 202-267-2180 Last EDR Contact: 07/05/2011 Next Scheduled EDR Contact: 10/17/2011 Data Release Frequency: Annually

State- and tribal - equivalent NPL

RESPONSE: State Response Sites

Identifies confirmed release sites where DTSC is involved in remediation, either in a lead or oversight capacity. These confirmed release sites are generally high-priority and high potential risk.

Date of Government Version: 06/15/2011	Source: Department of Toxic Substances Control
Date Data Arrived at EDR: 06/16/2011	Telephone: 916-323-3400
Date Made Active in Reports: 07/15/2011	Last EDR Contact: 06/16/2011
Number of Days to Update: 29	Next Scheduled EDR Contact: 08/22/2011
	Data Release Frequency: Quarterly

State- and tribal - equivalent CERCLIS

ENVIROSTOR: EnviroStor Database

The Department of Toxic Substances Control's (DTSC's) Site Mitigation and Brownfields Reuse Program's (SMBRP's) EnviroStor database identifes sites that have known contamination or sites for which there may be reasons to investigate further. The database includes the following site types: Federal Superfund sites (National Priorities List (NPL)); State Response, including Military Facilities and State Superfund; Voluntary Cleanup; and School sites. EnviroStor provides similar information to the information that was available in CalSites, and provides additional site information, including, but not limited to, identification of formerly-contaminated properties that have been released for reuse, properties where environmental deed restrictions have been recorded to prevent inappropriate land uses, and risk characterization information that is used to assess potential impacts to public health and the environment at contaminated sites.

Date of Government Version: 06/15/2011 Date Data Arrived at EDR: 06/16/2011 Date Made Active in Reports: 07/15/2011 Number of Days to Update: 29 Source: Department of Toxic Substances Control Telephone: 916-323-3400 Last EDR Contact: 06/16/2011 Next Scheduled EDR Contact: 08/22/2011 Data Release Frequency: Quarterly

State and tribal landfill and/or solid waste disposal site lists

SWF/LF (SWIS): Solid Waste Information System

Active, Closed and Inactive Landfills. SWF/LF records typically contain an inventory of solid waste disposal facilities or landfills. These may be active or i nactive facilities or open dumps that failed to meet RCRA Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 05/23/2011	Source: Department of Resources Recycling and Recovery
Date Data Arrived at EDR: 05/24/2011	Telephone: 916-341-6320
Date Made Active in Reports: 06/15/2011	Last EDR Contact: 05/24/2011
Number of Days to Update: 22	Next Scheduled EDR Contact: 09/05/2011
	Data Release Frequency: Quarterly

State and tribal leaking storage tank lists

LUST REG 9: Leaking Underground Storage Tank Report

Orange, Riverside, San Diego counties. For more current information, please refer to the State Water Resources Control Board's LUST database.

Source: California Regional Water Quality Control Board San Diego Region (9)
Telephone: 858-637-5595
Last EDR Contact: 06/27/2011
Next Scheduled EDR Contact: 10/10/2011
Data Release Frequency: No Update Planned

LUST REG 7: Leaking Underground Storage Tank Case Listing

Leaking Underground Storage Tank locations. Imperial, Riverside, San Diego, Santa Barbara counties.

Date of Government Version: 02/26/2004 Date Data Arrived at EDR: 02/26/2004	Source: California Regional Water Quality Control Board Colorado River Basin Region (7) Telephone: 760-776-8943
Date Made Active in Reports: 03/24/2004	Last EDR Contact: 08/01/2011
Number of Days to Update: 27	Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: No Update Planned

LUST REG 6V: Leaking Underground Storage Tank Case Listing

Leaking Underground Storage Tank locations. Inyo, Kern, Los Angeles, Mono, San Bernardino counties.

Date of Government Version: 06/07/2005	Source: California Regional Water Quality Control Board Victorville Branch Office (6)
Date Data Arrived at EDR: 06/07/2005	Telephone: 760-241-7365
Date Made Active in Reports: 06/29/2005	Last EDR Contact: 06/13/2011
Number of Days to Update: 22	Next Scheduled EDR Contact: 09/26/2011
	Data Release Frequency: No Update Planned

LUST REG 6L: Leaking Underground Storage Tank Case Listing

For more current information, please refer to the State Water Resources Control Board's LUST database.

Date of Government Version: 09/09/2003 Date Data Arrived at EDR: 09/10/2003	Source: California Regional Water Quality Control Board Lahontan Region (6)
Date Made Active in Reports: 10/07/2003	Telephone: 530-542-5572 Last EDR Contact: 06/13/2011
Number of Days to Update: 27	Next Scheduled EDR Contact: 09/26/2011
	Data Release Frequency: No Update Planned

LUST REG 5: Leaking Underground Storage Tank Database

Leaking Underground Storage Tank locations. Alameda, Alpine, Amador, Butte, Colusa, Contra Costa, Calveras, El Dorado, Fresno, Glenn, Kern, Kings, Lake, Lassen, Madera, Mariposa, Merced, Modoc, Napa, Nevada, Placer, Plumas, Sacramento, San Joaquin, Shasta, Solano, Stanislaus, Sutter, Tehama, Tulare, Tuolumne, Yolo, Yuba counties.

Date of Government Version: 07/01/2008 Date Data Arrived at EDR: 07/22/2008 Date Made Active in Reports: 07/31/2008 Number of Days to Update: 9	Source: California Regional Water Quality Control Board Central Valley Region (5) Telephone: 916-464-4834 Last EDR Contact: 07/01/2011 Next Scheduled EDR Contact: 10/17/2011 Data Release Frequency: Quarterly		
LUST REG 4: Underground Storage Tank Leak Li Los Angeles, Ventura counties. For more cur Board's LUST database.	os Angeles, Ventura counties. For more current information, please refer to the State Water Resources Control		
Date of Government Version: 09/07/2004 Date Data Arrived at EDR: 09/07/2004 Date Made Active in Reports: 10/12/2004 Number of Days to Update: 35	Source: California Regional Water Quality Control Board Los Angeles Region (4) Telephone: 213-576-6710 Last EDR Contact: 06/06/2011 Next Scheduled EDR Contact: 09/19/2011 Data Release Frequency: No Update Planned		
LUST REG 3: Leaking Underground Storage Tanl Leaking Underground Storage Tank location:	k Database s. Monterey, San Benito, San Luis Obispo, Santa Barbara, Santa Cruz counties.		
Date of Government Version: 05/19/2003 Date Data Arrived at EDR: 05/19/2003 Date Made Active in Reports: 06/02/2003 Number of Days to Update: 14	Source: California Regional Water Quality Control Board Central Coast Region (3) Telephone: 805-542-4786 Last EDR Contact: 07/18/2011 Next Scheduled EDR Contact: 10/31/2011 Data Release Frequency: No Update Planned		
LUST REG 2: Fuel Leak List Leaking Underground Storage Tank location: Clara, Solano, Sonoma counties.	s. Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa		
Date of Government Version: 09/30/2004 Date Data Arrived at EDR: 10/20/2004 Date Made Active in Reports: 11/19/2004 Number of Days to Update: 30	Source: California Regional Water Quality Control Board San Francisco Bay Region (2) Telephone: 510-622-2433 Last EDR Contact: 06/20/2011 Next Scheduled EDR Contact: 09/05/2011 Data Release Frequency: Quarterly		
LUST REG 1: Active Toxic Site Investigation Del Norte, Humboldt, Lake, Mendocino, Mod please refer to the State Water Resources C	oc, Siskiyou, Sonoma, Trinity counties. For more current information, ontrol Board's LUST database.		
Date of Government Version: 02/01/2001 Date Data Arrived at EDR: 02/28/2001 Date Made Active in Reports: 03/29/2001 Number of Days to Update: 29	Source: California Regional Water Quality Control Board North Coast (1) Telephone: 707-570-3769 Last EDR Contact: 08/01/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: No Update Planned		
storage tank incidents. Not all states maintain	ank Report Reports. LUST records contain an inventory of reported leaking underground in these records, and the information stored varies by state. For erground storage tank sites, please contact the appropriate regulatory		
Date of Government Version: 06/20/2011 Date Data Arrived at EDR: 06/21/2011 Date Made Active in Reports: 07/08/2011 Number of Days to Update: 17	Source: State Water Resources Control Board Telephone: see region list Last EDR Contact: 06/21/2011 Next Scheduled EDR Contact: 10/03/2011 Data Release Frequency: Quarterly		
LUST REG 8: Leaking Underground Storage Tanl California Regional Water Quality Control Bo	ks ard Santa Ana Region (8). For more current information, please refer		

California Regional Water Quality Control Board Santa Ana Region (8). For more current information, please refer to the State Water Resources Control Board's LUST database.

Date Data Ar Date Made A	ernment Version: 02/14/2005 rived at EDR: 02/15/2005 .ctive in Reports: 03/28/2005 ays to Update: 41	Source: California Regional Water Quality Control Board Santa Ana Region (8) Telephone: 909-782-4496 Last EDR Contact: 07/18/2011 Next Scheduled EDR Contact: 10/31/2011 Data Release Frequency: Varies
		Cleanup) program is designed to protect and restore water quality
Date Data Ar Date Made A	ernment Version: 06/20/2011 rived at EDR: 06/21/2011 .ctive in Reports: 07/08/2011 ays to Update: 17	Source: State Water Resources Control Board Telephone: 866-480-1028 Last EDR Contact: 06/21/2011 Next Scheduled EDR Contact: 10/03/2011 Data Release Frequency: Varies
The SLIC (Sp	ve Toxic Site Investigations bills, Leaks, Investigations and C aks, and similar discharges.	Cleanup) program is designed to protect and restore water quality
Date Data Ar Date Made A	ernment Version: 04/03/2003 rived at EDR: 04/07/2003 .ctive in Reports: 04/25/2003 ays to Update: 18	Source: California Regional Water Quality Control Board, North Coast Region (1) Telephone: 707-576-2220 Last EDR Contact: 08/01/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: No Update Planned
The SLIC (Sp	s, Leaks, Investigation & Cleanu bills, Leaks, Investigations and C aks, and similar discharges.	up Cost Recovery Listing Cleanup) program is designed to protect and restore water quality
Date Data Ar Date Made A	ernment Version: 09/30/2004 rived at EDR: 10/20/2004 .ctive in Reports: 11/19/2004 ays to Update: 30	Source: Regional Water Quality Control Board San Francisco Bay Region (2) Telephone: 510-286-0457 Last EDR Contact: 06/20/2011 Next Scheduled EDR Contact: 09/05/2011 Data Release Frequency: Quarterly
The SLIC (Sp	s, Leaks, Investigation & Cleanu pills, Leaks, Investigations and C aks, and similar discharges.	up Cost Recovery Listing Cleanup) program is designed to protect and restore water quality
Date Data Ar Date Made A	ernment Version: 05/18/2006 rived at EDR: 05/18/2006 .ctive in Reports: 06/15/2006 ays to Update: 28	Source: California Regional Water Quality Control Board Central Coast Region (3) Telephone: 805-549-3147 Last EDR Contact: 07/18/2011 Next Scheduled EDR Contact: 10/31/2011 Data Release Frequency: Semi-Annually
The SLIC (Sp	s, Leaks, Investigation & Cleanu pills, Leaks, Investigations and C aks, and similar discharges.	up Cost Recovery Listing Cleanup) program is designed to protect and restore water quality
Date Data Ar	rriment Version: 11/17/2004 rived at EDR: 11/18/2004 .ctive in Reports: 01/04/2005 ays to Update: 47	Source: Region Water Quality Control Board Los Angeles Region (4) Telephone: 213-576-6600 Last EDR Contact: 07/01/2011 Next Scheduled EDR Contact: 10/17/2011

The SLIC (Spills, Leaks, Investigations and Cleanup) program is designed to protect and restore water quality from spills, leaks, and similar discharges.

	Date of Government Version: 04/01/2005 Date Data Arrived at EDR: 04/05/2005 Date Made Active in Reports: 04/21/2005 Number of Days to Update: 16	Source: Regional Water Quality Control Board Central Valley Region (5) Telephone: 916-464-3291 Last EDR Contact: 06/13/2011 Next Scheduled EDR Contact: 09/26/2011 Data Release Frequency: Semi-Annually
SLIC REG 6V: Spills, Leaks, Investigation & Cleanup Cost The SLIC (Spills, Leaks, Investigations and Cleanup) from spills, leaks, and similar discharges.		up Cost Recovery Listing eanup) program is designed to protect and restore water quality
	Date of Government Version: 05/24/2005 Date Data Arrived at EDR: 05/25/2005 Date Made Active in Reports: 06/16/2005 Number of Days to Update: 22	Source: Regional Water Quality Control Board, Victorville Branch Telephone: 619-241-6583 Last EDR Contact: 05/16/2011 Next Scheduled EDR Contact: 08/29/2011 Data Release Frequency: Semi-Annually
SLI	C REG 6L: SLIC Sites The SLIC (Spills, Leaks, Investigations and Cle from spills, leaks, and similar discharges.	eanup) program is designed to protect and restore water quality
	Date of Government Version: 09/07/2004 Date Data Arrived at EDR: 09/07/2004 Date Made Active in Reports: 10/12/2004 Number of Days to Update: 35	Source: California Regional Water Quality Control Board, Lahontan Region Telephone: 530-542-5574 Last EDR Contact: 05/16/2011 Next Scheduled EDR Contact: 08/29/2011 Data Release Frequency: No Update Planned
SLIC REG 7: SLIC List The SLIC (Spills, Leaks, Investigations and Cleanup) program is designed to protect and restore water quality from spills, leaks, and similar discharges.		eanup) program is designed to protect and restore water quality
	Date of Government Version: 11/24/2004 Date Data Arrived at EDR: 11/29/2004 Date Made Active in Reports: 01/04/2005 Number of Days to Update: 36	Source: California Regional Quality Control Board, Colorado River Basin Region Telephone: 760-346-7491 Last EDR Contact: 08/01/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: No Update Planned
SLI	C REG 8: Spills, Leaks, Investigation & Cleanup The SLIC (Spills, Leaks, Investigations and Cle from spills, leaks, and similar discharges.	Cost Recovery Listing eanup) program is designed to protect and restore water quality
	Date of Government Version: 04/03/2008 Date Data Arrived at EDR: 04/03/2008 Date Made Active in Reports: 04/14/2008 Number of Days to Update: 11	Source: California Region Water Quality Control Board Santa Ana Region (8) Telephone: 951-782-3298 Last EDR Contact: 06/13/2011 Next Scheduled EDR Contact: 09/13/2011 Data Release Frequency: Semi-Annually
SLI	C REG 9: Spills, Leaks, Investigation & Cleanup The SLIC (Spills, Leaks, Investigations and Cle from spills, leaks, and similar discharges.	Cost Recovery Listing eanup) program is designed to protect and restore water quality
	Date of Government Version: 09/10/2007 Date Data Arrived at EDR: 09/11/2007 Date Made Active in Reports: 09/28/2007 Number of Days to Update: 17	Source: California Regional Water Quality Control Board San Diego Region (9) Telephone: 858-467-2980 Last EDR Contact: 08/08/2011 Next Scheduled EDR Contact: 11/21/2011 Data Release Frequency: Annually
IND	IAN LUST R10: Leaking Underground Storage	Tanks on Indian Land

INDIAN LUST R10: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Alaska, Idaho, Oregon and Washington.

Date of Government Version: 05/17/2011 Date Data Arrived at EDR: 05/19/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 26	Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 08/01/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Quarterly	
INDIAN LUST R1: Leaking Underground Storage T A listing of leaking underground storage tank le		
Date of Government Version: 03/07/2011 Date Data Arrived at EDR: 05/20/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 25	Source: EPA Region 1 Telephone: 617-918-1313 Last EDR Contact: 08/02/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Varies	
INDIAN LUST R8: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming.		
Date of Government Version: 05/16/2011 Date Data Arrived at EDR: 05/17/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 28	Source: EPA Region 8 Telephone: 303-312-6271 Last EDR Contact: 08/01/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Quarterly	
INDIAN LUST R6: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in New Mexico and Oklahoma.		
Date of Government Version: 05/10/2011 Date Data Arrived at EDR: 05/11/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 34	Source: EPA Region 6 Telephone: 214-665-6597 Last EDR Contact: 08/01/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Varies	
INDIAN LUST R4: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Florida, Mississippi and North Carolina.		
Date of Government Version: 03/03/2011 Date Data Arrived at EDR: 03/18/2011 Date Made Active in Reports: 05/02/2011 Number of Days to Update: 45	Source: EPA Region 4 Telephone: 404-562-8677 Last EDR Contact: 08/01/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Semi-Annually	
INDIAN LUST R9: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Arizona, California, New Mexico and Nevada		
Date of Government Version: 01/31/2011 Date Data Arrived at EDR: 02/01/2011 Date Made Active in Reports: 03/21/2011 Number of Days to Update: 48	Source: Environmental Protection Agency Telephone: 415-972-3372 Last EDR Contact: 08/01/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Quarterly	
INDIAN LUST R7: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Iowa, Kansas, and Nebraska		
Date of Government Version: 11/04/2009 Date Data Arrived at EDR: 05/04/2010 Date Made Active in Reports: 07/07/2010 Number of Days to Update: 64	Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 08/02/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Varies	

State and tribal registered storage tank lists

UST: Active UST Facilities Active UST facilities gathered from the local re	egulatory agencies	
Date of Government Version: 06/20/2011 Date Data Arrived at EDR: 06/21/2011 Date Made Active in Reports: 07/08/2011 Number of Days to Update: 17	Source: SWRCB Telephone: 916-480-1028 Last EDR Contact: 06/21/2011 Next Scheduled EDR Contact: 10/03/2011 Data Release Frequency: Semi-Annually	
AST: Aboveground Petroleum Storage Tank Facilit Registered Aboveground Storage Tanks.	ies	
Date of Government Version: 08/01/2009 Date Data Arrived at EDR: 09/10/2009 Date Made Active in Reports: 10/01/2009 Number of Days to Update: 21	Source: State Water Resources Control Board Telephone: 916-341-5712 Last EDR Contact: 07/08/2011 Next Scheduled EDR Contact: 10/24/2011 Data Release Frequency: Quarterly	
INDIAN UST R10: Underground Storage Tanks on Indian Land The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 10 (Alaska, Idaho, Oregon, Washington, and Tribal Nations).		
Date of Government Version: 05/17/2011 Date Data Arrived at EDR: 05/19/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 26	Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 08/01/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Quarterly	
INDIAN UST R9: Underground Storage Tanks on Indian Land The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 9 (Arizona, California, Hawaii, Nevada, the Pacific Islands, and Tribal Nations).		
Date of Government Version: 05/18/2011 Date Data Arrived at EDR: 05/26/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 19	Source: EPA Region 9 Telephone: 415-972-3368 Last EDR Contact: 08/01/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Quarterly	
INDIAN UST R8: Underground Storage Tanks on Indian Land The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming and 27 Tribal Nations).		
Date of Government Version: 05/16/2011 Date Data Arrived at EDR: 05/17/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 28	Source: EPA Region 8 Telephone: 303-312-6137 Last EDR Contact: 08/01/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Quarterly	
INDIAN UST R7: Underground Storage Tanks on Indian Land The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 7 (Iowa, Kansas, Missouri, Nebraska, and 9 Tribal Nations).		
Date of Government Version: 04/01/2011 Date Data Arrived at EDR: 06/01/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 13	Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 08/02/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Varies	
INDIAN UST R6: Underground Storage Tanks on Indian Land The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian Iand in EPA Region 6 (Louisiana, Arkansas, Oklahoma, New Mexico, Texas and 65 Tribes).		

Date of Government Version: 05/10/2011 Date Data Arrived at EDR: 05/11/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 34	Source: EPA Region 6 Telephone: 214-665-7591 Last EDR Contact: 08/01/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Semi-Annually	
INDIAN UST R5: Underground Storage Tanks on Ir The Indian Underground Storage Tank (UST) land in EPA Region 5 (Michigan, Minnesota ar	database provides information about underground storage tanks on Indian	
Date of Government Version: 01/01/2011 Date Data Arrived at EDR: 02/23/2011 Date Made Active in Reports: 05/02/2011 Number of Days to Update: 68	Source: EPA Region 5 Telephone: 312-886-6136 Last EDR Contact: 08/01/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Varies	
INDIAN UST R4: Underground Storage Tanks on Indian Land The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 4 (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee and Tribal Nations)		
Date of Government Version: 03/03/2011 Date Data Arrived at EDR: 03/18/2011 Date Made Active in Reports: 05/02/2011 Number of Days to Update: 45	Source: EPA Region 4 Telephone: 404-562-9424 Last EDR Contact: 08/01/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Semi-Annually	
• • • • •	ndian Land database provides information about underground storage tanks on Indian issachusetts, New Hampshire, Rhode Island, Vermont and ten Tribal	
Date of Government Version: 03/07/2011 Date Data Arrived at EDR: 05/04/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 41	Source: EPA, Region 1 Telephone: 617-918-1313 Last EDR Contact: 08/02/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Varies	
FEMA UST: Underground Storage Tank Listing A listing of all FEMA owned underground stora	ige tanks.	
Date of Government Version: 01/01/2010 Date Data Arrived at EDR: 02/16/2010 Date Made Active in Reports: 04/12/2010 Number of Days to Update: 55	Source: FEMA Telephone: 202-646-5797 Last EDR Contact: 07/18/2011 Next Scheduled EDR Contact: 10/31/2011 Data Release Frequency: Varies	
State and tribal voluntary cleanup sites		
INDIAN VCP R7: Voluntary Cleanup Priority Lisitng A listing of voluntary cleanup priority sites loca		
Date of Government Version: 03/20/2008 Date Data Arrived at EDR: 04/22/2008 Date Made Active in Reports: 05/19/2008 Number of Days to Update: 27	Source: EPA, Region 7 Telephone: 913-551-7365 Last EDR Contact: 04/20/2009 Next Scheduled EDR Contact: 07/20/2009 Data Release Frequency: Varies	

VCP: Voluntary Cleanup Program Properties

Contains low threat level properties with either confirmed or unconfirmed releases and the project proponents have request that DTSC oversee investigation and/or cleanup activities and have agreed to provide coverage for DTSC's costs.

Date of Government Version: 06/15/2011 Date Data Arrived at EDR: 06/16/2011 Date Made Active in Reports: 07/15/2011 Number of Days to Update: 29 Source: Department of Toxic Substances Control Telephone: 916-323-3400 Last EDR Contact: 06/16/2011 Next Scheduled EDR Contact: 08/22/2011 Data Release Frequency: Quarterly

INDIAN VCP R1: Voluntary Cleanup Priority Listing

A listing of voluntary cleanup priority sites located on Indian Land located in Region 1.

Date of Government Version: 02/25/2011 Date Data Arrived at EDR: 04/05/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 70 Source: EPA, Region 1 Telephone: 617-918-1102 Last EDR Contact: 07/05/2011 Next Scheduled EDR Contact: 10/17/2011 Data Release Frequency: Varies

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS: A Listing of Brownfields Sites

Included in the listing are brownfields properties addresses by Cooperative Agreement Recipients and brownfields properties addressed by Targeted Brownfields Assessments. Targeted Brownfields Assessments-EPA's Targeted Brownfields Assessments (TBA) program is designed to help states, tribes, and municipalities--especially those without EPA Brownfields Assessment Demonstration Pilots--minimize the uncertainties of contamination often associated with brownfields. Under the TBA program, EPA provides funding and/or technical assistance for environmental assessments at brownfields sites throughout the country. Targeted Brownfields Assessments supplement and work with other efforts under EPA's Brownfields Initiative to promote cleanup and redevelopment of brownfields. Cooperative Agreement Recipients-States, political subdivisions, territories, and Indian tribes become Brownfields Cleanup Revolving Loan Fund (BCRLF) cooperative agreement recipients when they enter into BCRLF cooperative agreements with the U.S. EPA. EPA selects BCRLF cooperative agreement recipients based on a proposal and application process. BCRLF cooperative agreement for specified brownfields-related cleanup activities.

Date of Government Version: 03/29/2011 Date Data Arrived at EDR: 03/29/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 77 Source: Environmental Protection Agency Telephone: 202-566-2777 Last EDR Contact: 06/27/2011 Next Scheduled EDR Contact: 10/10/2011 Data Release Frequency: Semi-Annually

Local Lists of Landfill / Solid Waste Disposal Sites

ODI: Open Dump Inventory

An open dump is defined as a disposal facility that does not comply with one or more of the Part 257 or Part 258 Subtitle D Criteria.

Date of Government Version: 06/30/1985 Date Data Arrived at EDR: 08/09/2004 Date Made Active in Reports: 09/17/2004 Number of Days to Update: 39 Source: Environmental Protection Agency Telephone: 800-424-9346 Last EDR Contact: 06/09/2004 Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned

DEBRIS REGION 9: Torres Martinez Reservation Illegal Dump Site Locations

A listing of illegal dump sites location on the Torres Martinez Indian Reservation located in eastern Riverside County and northern Imperial County, California.

Date of Government Version: 01/12/2009	Source: EPA, Region 9
Date Data Arrived at EDR: 05/07/2009	Telephone: 415-947-4219
Date Made Active in Reports: 09/21/2009	Last EDR Contact: 06/27/2011
Number of Days to Update: 137	Next Scheduled EDR Contact: 10/10/2011 Data Release Frequency: No Update Planned

WMUDS/SWAT: Waste Management Unit Database

Waste Management Unit Database System. WMUDS is used by the State Water Resources Control Board staff and the Regional Water Quality Control Boards for program tracking and inventory of waste management units. WMUDS is composed of the following databases: Facility Information, Scheduled Inspections Information, Waste Management Unit Information, SWAT Program Information, SWAT Report Summary Information, SWAT Report Summary Data, Chapter 15 (formerly Subchapter 15) Information, Chapter 15 Monitoring Parameters, TPCA Program Information, RCRA Program Information, Closure Information, and Interested Parties Information.

Date of Government Version: 04/01/2000 Date Data Arrived at EDR: 04/10/2000 Date Made Active in Reports: 05/10/2000 Number of Days to Update: 30	Source: State Water Resources Control Board Telephone: 916-227-4448 Last EDR Contact: 05/16/2011 Next Scheduled EDR Contact: 08/29/2011 Data Release Frequency: No Update Planned
SWRCY: Recycler Database A listing of recycling facilities in California.	
Date of Government Version: 06/01/2011 Date Data Arrived at EDR: 06/21/2011 Date Made Active in Reports: 07/15/2011 Number of Days to Update: 24	Source: Department of Conservation Telephone: 916-323-3836 Last EDR Contact: 06/21/2011 Next Scheduled EDR Contact: 10/03/2011 Data Release Frequency: Quarterly
HAULERS: Registered Waste Tire Haulers Listing A listing of registered waste tire haulers.	
Date of Government Version: 05/24/2011 Date Data Arrived at EDR: 05/24/2011 Date Made Active in Reports: 06/15/2011 Number of Days to Update: 22	Source: Integrated Waste Management Board Telephone: 916-341-6422 Last EDR Contact: 05/24/2011 Next Scheduled EDR Contact: 09/05/2011 Data Release Frequency: Varies
INDIAN ODI: Report on the Status of Open Dumps Location of open dumps on Indian land.	on Indian Lands
Date of Government Version: 12/31/1998 Date Data Arrived at EDR: 12/03/2007 Date Made Active in Reports: 01/24/2008	Source: Environmental Protection Agency Telephone: 703-308-8245 Last EDR Contact: 08/08/2011

Local Lists of Hazardous waste / Contaminated Sites

US CDL: Clandestine Drug Labs

Number of Days to Update: 52

A listing of clandestine drug lab locations. The U.S. Department of Justice ("the Department") provides this web site as a public service. It contains addresses of some locations where law enforcement agencies reported they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites. In most cases, the source of the entries is not the Department, and the Department has not verified the entry and does not guarantee its accuracy. Members of the public must verify the accuracy of all entries by, for example, contacting local law enforcement and local health departments.

Source: Drug Enforcement Administration Telephone: 202-307-1000 Last EDR Contact: 06/07/2011 Next Scheduled EDR Contact: 09/19/2011 Data Release Frequency: Quarterly

Next Scheduled EDR Contact: 11/21/2011 Data Release Frequency: Varies

HIST CAL-SITES: Calsites Database

The Calsites database contains potential or confirmed hazardous substance release properties. In 1996, California EPA reevaluated and significantly reduced the number of sites in the Calsites database. No longer updated by the state agency. It has been replaced by ENVIROSTOR.

Date of Government Version: 08/08/2005 Date Data Arrived at EDR: 08/03/2006 Date Made Active in Reports: 08/24/2006 Number of Days to Update: 21 Source: Department of Toxic Substance Control Telephone: 916-323-3400 Last EDR Contact: 02/23/2009 Next Scheduled EDR Contact: 05/25/2009 Data Release Frequency: No Update Planned

SCH: School Property Evaluation Program

This category contains proposed and existing school sites that are being evaluated by DTSC for possible hazardous materials contamination. In some cases, these properties may be listed in the CalSites category depending on the level of threat to public health and safety or the environment they pose.

Date of Government Version: 06/15/2011 Date Data Arrived at EDR: 06/16/2011 Date Made Active in Reports: 07/15/2011 Number of Days to Update: 29

Source: Department of Toxic Substances Control Telephone: 916-323-3400 Last EDR Contact: 06/16/2011 Next Scheduled EDR Contact: 08/22/2011 Data Release Frequency: Quarterly

TOXIC PITS: Toxic Pits Cleanup Act Sites

Toxic PITS Cleanup Act Sites. TOXIC PITS identifies sites suspected of containing hazardous substances where cleanup has not yet been completed.

Date of Government Version: 07/01/1995 Date Data Arrived at EDR: 08/30/1995 Date Made Active in Reports: 09/26/1995 Number of Days to Update: 27 Source: State Water Resources Control Board Telephone: 916-227-4364 Last EDR Contact: 01/26/2009 Next Scheduled EDR Contact: 04/27/2009 Data Release Frequency: No Update Planned

CDL: Clandestine Drug Labs

A listing of drug lab locations. Listing of a location in this database does not indicate that any illegal drug lab materials were or were not present there, and does not constitute a determination that the location either requires or does not require additional cleanup work.

Date of Government Version: 12/31/2010Source: Department of Toxic Substances ControlDate Data Arrived at EDR: 03/04/2011Telephone: 916-255-6504Date Made Active in Reports: 03/24/2011Last EDR Contact: 08/08/2011Number of Days to Update: 20Next Scheduled EDR Contact: 10/17/2011Data Release Frequency: Varies

US HIST CDL: National Clandestine Laboratory Register

A listing of clandestine drug lab locations. The U.S. Department of Justice ("the Department") provides this web site as a public service. It contains addresses of some locations where law enforcement agencies reported they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites. In most cases, the source of the entries is not the Department, and the Department has not verified the entry and does not guarantee its accuracy. Members of the public must verify the accuracy of all entries by, for example, contacting local law enforcement and local health departments.

Date of Government Version: 09/01/2007	Source: Drug Enforcement Administration
Date Data Arrived at EDR: 11/19/2008	Telephone: 202-307-1000
Date Made Active in Reports: 03/30/2009	Last EDR Contact: 03/23/2009
Number of Days to Update: 131	Next Scheduled EDR Contact: 06/22/2009
	Data Release Frequency: No Update Planned

Local Lists of Registered Storage Tanks

CA FID UST: Facility Inventory Database

The Facility Inventory Database (FID) contains a historical listing of active and inactive underground storage tank locations from the State Water Resource Control Board. Refer to local/county source for current data.

Date of Government Version: 10/31/1994 Date Data Arrived at EDR: 09/05/1995 Date Made Active in Reports: 09/29/1995 Number of Days to Update: 24 Source: California Environmental Protection Agency Telephone: 916-341-5851 Last EDR Contact: 12/28/1998 Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned

UST MENDOCINO: Mendocino County UST Database

A listing of underground storage tank locations in Mendocino County.

Date of Government Version: 09/23/2009	Source: Department of Public Health
Date Data Arrived at EDR: 09/23/2009	Telephone: 707-463-4466
Date Made Active in Reports: 10/01/2009	Last EDR Contact: 06/06/2011
Number of Days to Update: 8	Next Scheduled EDR Contact: 09/19/2011
	Data Release Frequency: Annually

HIST UST: Hazardous Substance Storage Container Database

The Hazardous Substance Storage Container Database is a historical listing of UST sites. Refer to local/county source for current data.

Date of Government Version: 10/15/1990	Source: State Water Resources Control Board
Date Data Arrived at EDR: 01/25/1991	Telephone: 916-341-5851
Date Made Active in Reports: 02/12/1991	Last EDR Contact: 07/26/2001
Number of Days to Update: 18	Next Scheduled EDR Contact: N/A
	Data Release Frequency: No Update Planned

SWEEPS UST: SWEEPS UST Listing

Statewide Environmental Evaluation and Planning System. This underground storage tank listing was updated and maintained by a company contacted by the SWRCB in the early 1990's. The listing is no longer updated or maintained. The local agency is the contact for more information on a site on the SWEEPS list.

Date of Government Version: 06/01/1994	Source: State Water Resources Control Board
Date Data Arrived at EDR: 07/07/2005	Telephone: N/A
Date Made Active in Reports: 08/11/2005	Last EDR Contact: 06/03/2005
Number of Days to Update: 35	Next Scheduled EDR Contact: N/A
	Data Release Frequency: No Update Planned

Local Land Records

LIENS 2: CERCLA Lien Information

A Federal CERCLA ('Superfund') lien can exist by operation of law at any site or property at which EPA has spent Superfund monies. These monies are spent to investigate and address releases and threatened releases of contamination. CERCLIS provides information as to the identity of these sites and properties.

Date of Government Version: 02/01/2011	Source: Environmental Protection Agency
Date Data Arrived at EDR: 02/04/2011	Telephone: 202-564-6023
Date Made Active in Reports: 05/02/2011	Last EDR Contact: 08/01/2011
Number of Days to Update: 87	Next Scheduled EDR Contact: 11/14/2011
	Data Release Frequency: Varies

LUCIS: Land Use Control Information System

LUCIS contains records of land use control information pertaining to the former Navy Base Realignment and Closure properties.

Date of Government Version: 12/09/2005 Date Data Arrived at EDR: 12/11/2006 Date Made Active in Reports: 01/11/2007 Number of Days to Update: 31 Source: Department of the Navy Telephone: 843-820-7326 Last EDR Contact: 07/11/2011 Next Scheduled EDR Contact: 09/05/2011 Data Release Frequency: Varies

LIENS: Environmental Liens Listing

A listing of property locations with environmental liens for California where DTSC is a lien holder.

Date of Government Version: 06/28/2011	Source: Department of Toxic Substances Control
Date Data Arrived at EDR: 06/29/2011	Telephone: 916-323-3400
Date Made Active in Reports: 07/08/2011	Last EDR Contact: 06/27/2011
Number of Days to Update: 9	Next Scheduled EDR Contact: 09/26/2011
	Data Release Frequency: Varies

DEED: Deed Restriction Listing

Site Mitigation and Brownfields Reuse Program Facility Sites with Deed Restrictions & Hazardous Waste Management Program Facility Sites with Deed / Land Use Restriction. The DTSC Site Mitigation and Brownfields Reuse Program (SMBRP) list includes sites cleaned up under the program's oversight and generally does not include current or former hazardous waste facilities that required a hazardous waste facility permit. The list represents deed restrictions that are active. Some sites have multiple deed restrictions. The DTSC Hazardous Waste Management Program (HWMP) has developed a list of current or former hazardous waste facilities that have a recorded land use restriction at the local county recorder's office. The land use restrictions on this list were required by the DTSC HWMP as a result of the presence of hazardous substances that remain on site after the facility (or part of the facility) has been closed or cleaned up. The types of land use restriction include deed notice, deed restriction, or a land use restriction that binds current and future owners.

Date of Government Version: 06/13/2011 Date Data Arrived at EDR: 06/14/2011 Date Made Active in Reports: 07/15/2011 Number of Days to Update: 31

Source: Department of Toxic Substances Control Telephone: 916-323-3400 Last EDR Contact: 06/14/2011 Next Scheduled EDR Contact: 09/26/2011 Data Release Frequency: Semi-Annually

Records of Emergency Release Reports

HMIRS: Hazardous Materials Information Reporting System

Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.

Date of Government Version: 12/31/2010	Source: U.S. Department of Transportation
Date Data Arrived at EDR: 01/05/2011	Telephone: 202-366-4555
Date Made Active in Reports: 02/25/2011	Last EDR Contact: 07/05/2011
Number of Days to Update: 51	Next Scheduled EDR Contact: 10/17/2011
	Data Release Frequency: Annually

CHMIRS: California Hazardous Material Incident Report System

California Hazardous Material Incident Reporting System. CHMIRS contains information on reported hazardous material incidents (accidental releases or spills).

Date of Government Version: 12/31/2010	Source: Office of Emergency Services
Date Data Arrived at EDR: 05/03/2011	Telephone: 916-845-8400
Date Made Active in Reports: 06/15/2011	Last EDR Contact: 08/01/2011
Number of Days to Update: 43	Next Scheduled EDR Contact: 11/14/2011
	Data Release Frequency: Varies

LDS: Land Disposal Sites Listing

The Land Disposal program regulates of waste discharge to land for treatment, storage and disposal in waste management units.

Date of Government Version: 06/20/2011	Source: State Water Qualilty Control Board
Date Data Arrived at EDR: 06/21/2011	Telephone: 866-480-1028
Date Made Active in Reports: 07/08/2011	Last EDR Contact: 06/21/2011
Number of Days to Update: 17	Next Scheduled EDR Contact: 10/03/2011
	Data Release Frequency: Quarterly

MCS: Military Cleanup Sites Listing

The State Water Resources Control Board and nine Regional Water Quality Control Boards partner with the Department of Defense (DoD) through the Defense and State Memorandum of Agreement (DSMOA) to oversee the investigation and remediation of water quality issues at military facilities.

Date of Government Version: 06/20/2011	Source: State Water Resources Control Board
Date Data Arrived at EDR: 06/21/2011	Telephone: 866-480-1028
Date Made Active in Reports: 07/08/2011	Last EDR Contact: 06/21/2011
Number of Days to Update: 17	Next Scheduled EDR Contact: 10/03/2011
	Data Release Frequency: Quarterly

Other Ascertainable Records

RCRA-NonGen: RCRA - Non Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

Date of Government Version: 06/15/2011 Date Data Arrived at EDR: 07/07/2011 Date Made Active in Reports: 08/08/2011 Number of Days to Update: 32	Source: Environmental Protection Agency Telephone: (415) 495-8895 Last EDR Contact: 07/07/2011 Next Scheduled EDR Contact: 10/17/2011 Data Release Frequency: Varies	
DOT OPS: Incident and Accident Data Department of Transporation, Office of Pipeline Safety Incident and Accident data.		
Date of Government Version: 01/12/2011 Date Data Arrived at EDR: 02/11/2011 Date Made Active in Reports: 05/02/2011 Number of Days to Update: 80	Source: Department of Transporation, Office of Pipeline Safety Telephone: 202-366-4595 Last EDR Contact: 05/11/2011 Next Scheduled EDR Contact: 08/22/2011 Data Release Frequency: Varies	
DOD: Department of Defense Sites This data set consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.		
Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 11/10/2006 Date Made Active in Reports: 01/11/2007 Number of Days to Update: 62	Source: USGS Telephone: 888-275-8747 Last EDR Contact: 07/22/2011 Next Scheduled EDR Contact: 10/31/2011 Data Release Frequency: Semi-Annually	
FUDS: Formerly Used Defense Sites The listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers is actively working or will take necessary cleanup actions.		
Date of Government Version: 12/31/2009 Date Data Arrived at EDR: 08/12/2010 Date Made Active in Reports: 12/02/2010 Number of Days to Update: 112	Source: U.S. Army Corps of Engineers Telephone: 202-528-4285 Last EDR Contact: 06/14/2011 Next Scheduled EDR Contact: 09/26/2011 Data Release Frequency: Varies	
CONSENT: Superfund (CERCLA) Consent Decrees Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.		
Date of Government Version: 12/31/2010 Date Data Arrived at EDR: 04/05/2011 Date Made Active in Reports: 06/14/2011 Number of Days to Update: 70	Source: Department of Justice, Consent Decree Library Telephone: Varies Last EDR Contact: 07/01/2011 Next Scheduled EDR Contact: 10/17/2011 Data Release Frequency: Varies	
ROD: Records Of Decision Record of Decision. ROD documents mandate and health information to aid in the cleanup.	e a permanent remedy at an NPL (Superfund) site containing technical	

Date of Government Version: 02/25/2011	Source: EPA
Date Data Arrived at EDR: 03/16/2011	Telephone: 703-416-0223
Date Made Active in Reports: 03/21/2011	Last EDR Contact: 06/15/2011
Number of Days to Update: 5	Next Scheduled EDR Contact: 09/26/2011
	Data Release Frequency: Annually

UMTRA: Uranium Mill Tailings Sites

Uranium ore was mined by private companies for federal government use in national defense programs. When the mills shut down, large piles of the sand-like material (mill tailings) remain after uranium has been extracted from the ore. Levels of human exposure to radioactive materials from the piles are low; however, in some cases tailings were used as construction materials before the potential health hazards of the tailings were recognized.

Date of Government Version: 09/14/2010 Date Data Arrived at EDR: 10/21/2010 Date Made Active in Reports: 01/28/2011 Number of Days to Update: 99	Source: Department of Energy Telephone: 505-845-0011 Last EDR Contact: 06/02/2011 Next Scheduled EDR Contact: 09/12/2011 Data Release Frequency: Varies
MINES: Mines Master Index File Contains all mine identification numbers issue violation information.	ed for mines active or opened since 1971. The data also includes
Date of Government Version: 02/08/2011 Date Data Arrived at EDR: 03/09/2011 Date Made Active in Reports: 05/02/2011 Number of Days to Update: 54	Source: Department of Labor, Mine Safety and Health Administration Telephone: 303-231-5959 Last EDR Contact: 06/08/2011 Next Scheduled EDR Contact: 09/19/2011 Data Release Frequency: Semi-Annually
TRIS: Toxic Chemical Release Inventory System Toxic Release Inventory System. TRIS identi Iand in reportable quantities under SARA Title	fies facilities which release toxic chemicals to the air, water and e III Section 313.
Date of Government Version: 12/31/2009 Date Data Arrived at EDR: 12/17/2010 Date Made Active in Reports: 03/21/2011 Number of Days to Update: 94	Source: EPA Telephone: 202-566-0250 Last EDR Contact: 05/27/2011 Next Scheduled EDR Contact: 09/12/2011 Data Release Frequency: Annually
	es manufacturers and importers of chemical substances included on the includes data on the production volume of these substances by plant
Date of Government Version: 12/31/2006 Date Data Arrived at EDR: 09/29/2010 Date Made Active in Reports: 12/02/2010 Number of Days to Update: 64	Source: EPA Telephone: 202-260-5521 Last EDR Contact: 06/30/2011 Next Scheduled EDR Contact: 10/10/2011 Data Release Frequency: Every 4 Years
FTTS tracks administrative cases and pestici	ederal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) de enforcement actions and compliance activities related to FIFRA, d Community Right-to-Know Act). To maintain currency, EDR contacts the
Date of Government Version: 04/09/2009 Date Data Arrived at EDR: 04/16/2009 Date Made Active in Reports: 05/11/2009 Number of Days to Update: 25	Source: EPA/Office of Prevention, Pesticides and Toxic Substances Telephone: 202-566-1667 Last EDR Contact: 05/27/2011 Next Scheduled EDR Contact: 09/12/2011 Data Release Frequency: Quarterly
FTTS INSP: FIFRA/ TSCA Tracking System - FIF A listing of FIFRA/TSCA Tracking System (F	RA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) TTS) inspections and enforcements.
Date of Government Version: 04/09/2009 Date Data Arrived at EDR: 04/16/2009 Date Made Active in Reports: 05/11/2009 Number of Days to Update: 25	Source: EPA Telephone: 202-566-1667 Last EDR Contact: 05/27/2011 Next Scheduled EDR Contact: 09/12/2011 Data Release Frequency: Quarterly

HIST FTTS: FIFRA/TSCA Tracking System Administrative Case Listing

A complete administrative case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006	Source: Environmental Protection Agency
Date Data Arrived at EDR: 03/01/2007	Telephone: 202-564-2501
Date Made Active in Reports: 04/10/2007	Last EDR Contact: 12/17/2007
Number of Days to Update: 40	Next Scheduled EDR Contact: 03/17/2008
	Data Release Frequency: No Update Planned

HIST FTTS INSP: FIFRA/TSCA Tracking System Inspection & Enforcement Case Listing

A complete inspection and enforcement case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006	Source: Environmental Protection Agency
Date Data Arrived at EDR: 03/01/2007	Telephone: 202-564-2501
Date Made Active in Reports: 04/10/2007	Last EDR Contact: 12/17/2008
Number of Days to Update: 40	Next Scheduled EDR Contact: 03/17/2008
	Data Release Frequency: No Update Planned

SSTS: Section 7 Tracking Systems

Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.

Date of Government Version: 12/31/2009 Date Data Arrived at EDR: 12/10/2010 Date Made Active in Reports: 02/25/2011 Number of Days to Update: 77 Source: EPA Telephone: 202-564-4203 Last EDR Contact: 08/03/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Annually

ICIS: Integrated Compliance Information System

The Integrated Compliance Information System (ICIS) supports the information needs of the national enforcement and compliance program as well as the unique needs of the National Pollutant Discharge Elimination System (NPDES) program.

Date of Government Version: 01/07/2011 Date Data Arrived at EDR: 01/21/2011 Date Made Active in Reports: 03/21/2011 Number of Days to Update: 59 Source: Environmental Protection Agency Telephone: 202-564-5088 Last EDR Contact: 06/27/2011 Next Scheduled EDR Contact: 10/10/2011 Data Release Frequency: Quarterly

PADS: PCB Activity Database System

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 11/01/2010	Source: EPA
Date Data Arrived at EDR: 11/10/2010	Telephone: 202-566-0500
Date Made Active in Reports: 02/16/2011	Last EDR Contact: 07/22/2011
Number of Days to Update: 98	Next Scheduled EDR Contact: 10/31/2011
	Data Release Frequency: Annually

MLTS: Material Licensing Tracking System

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 03/18/2010	Source: Nuclear Regulatory Commission
Date Data Arrived at EDR: 04/06/2010	Telephone: 301-415-7169
Date Made Active in Reports: 05/27/2010	Last EDR Contact: 06/13/2011
Number of Days to Update: 51	Next Scheduled EDR Contact: 09/26/2011
	Data Release Frequency: Quarterly

RADINFO: Radiation Information Database

The Radiation Information Database (RADINFO) contains information about facilities that are regulated by U.S. Environmental Protection Agency (EPA) regulations for radiation and radioactivity.

Date of Government Version: 01/11/2011 Date Data Arrived at EDR: 01/13/2011 Date Made Active in Reports: 02/16/2011 Number of Days to Update: 34 Source: Environmental Protection Agency Telephone: 202-343-9775 Last EDR Contact: 07/12/2011 Next Scheduled EDR Contact: 10/24/2011 Data Release Frequency: Quarterly

FINDS: Facility Index System/Facility Registry System

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 04/14/2010 Date Data Arrived at EDR: 04/16/2010 Date Made Active in Reports: 05/27/2010 Number of Days to Update: 41 Source: EPA Telephone: (415) 947-8000 Last EDR Contact: 06/14/2011 Next Scheduled EDR Contact: 09/26/2011 Data Release Frequency: Quarterly

RAATS: RCRA Administrative Action Tracking System

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version: 04/17/1995Source:Date Data Arrived at EDR: 07/03/1995TelephonDate Made Active in Reports: 08/07/1995Last EDDNumber of Days to Update: 35Next Sch

Source: EPA Telephone: 202-564-4104 Last EDR Contact: 06/02/2008 Next Scheduled EDR Contact: 09/01/2008 Data Release Frequency: No Update Planned

BRS: Biennial Reporting System

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/31/2009	Source: EPA/NTIS
Date Data Arrived at EDR: 03/01/2011	Telephone: 800-424-9346
Date Made Active in Reports: 05/02/2011	Last EDR Contact: 05/27/2011
Number of Days to Update: 62	Next Scheduled EDR Contact: 09/12/2011 Data Release Frequency: Biennially

CA BOND EXP. PLAN: Bond Expenditure Plan

Department of Health Services developed a site-specific expenditure plan as the basis for an appropriation of Hazardous Substance Cleanup Bond Act funds. It is not updated.

Date of Government Version: 01/01/1989 Date Data Arrived at EDR: 07/27/1994 Date Made Active in Reports: 08/02/1994 Number of Days to Update: 6	Source: Department of Health Services Telephone: 916-255-2118 Last EDR Contact: 05/31/1994 Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned
WDS: Waste Discharge System Sites which have been issued waste discharg	e requirements.
Date of Government Version: 06/19/2007 Date Data Arrived at EDR: 06/20/2007 Date Made Active in Reports: 06/29/2007 Number of Days to Update: 9	Source: State Water Resources Control Board Telephone: 916-341-5227 Last EDR Contact: 06/13/2011 Next Scheduled EDR Contact: 09/12/2011 Data Release Frequency: Quarterly

NPDES: NPDES Permits Listing

A listing of NPDES permits, including stormwater.

Date of Government Version: 05/24/2011	Source: State Water Resources Control Board
Date Data Arrived at EDR: 05/24/2011	Telephone: 916-445-9379
Date Made Active in Reports: 06/15/2011	Last EDR Contact: 05/24/2011
Number of Days to Update: 22	Next Scheduled EDR Contact: 09/05/2011
	Data Release Frequency: Quarterly

CORTESE: "Cortese" Hazardous Waste & Substances Sites List

The sites for the list are designated by the State Water Resource Control Board (LUST), the Integrated Waste Board (SWF/LS), and the Department of Toxic Substances Control (Cal-Sites). This listing is no longer updated by the state agency.

Date of Government Version: 07/01/2011	Source: CAL EPA/Office of Emergency Information
Date Data Arrived at EDR: 07/01/2011	Telephone: 916-323-3400
Date Made Active in Reports: 07/15/2011	Last EDR Contact: 07/01/2011
Number of Days to Update: 14	Next Scheduled EDR Contact: 10/17/2011
	Data Release Frequency: Quarterly

HIST CORTESE: Hazardous Waste & Substance Site List

The sites for the list are designated by the State Water Resource Control Board [LUST], the Integrated Waste Board [SWF/LS], and the Department of Toxic Substances Control [CALSITES].

Date of Government Version: 04/01/2001	Source: Department of Toxic Substances Control
Date Data Arrived at EDR: 01/22/2009	Telephone: 916-323-3400
Date Made Active in Reports: 04/08/2009	Last EDR Contact: 01/22/2009
Number of Days to Update: 76	Next Scheduled EDR Contact: N/A
	Data Release Frequency: No Update Planned

NOTIFY 65: Proposition 65 Records

Listings of all Proposition 65 incidents reported to counties by the State Water Resources Control Board and the Regional Water Quality Control Board. This database is no longer updated by the reporting agency.

Date of Government Version: 10/21/1993	Source: State Water Resources Control Board
Date Data Arrived at EDR: 11/01/1993	Telephone: 916-445-3846
Date Made Active in Reports: 11/19/1993	Last EDR Contact: 06/27/2011
Number of Days to Update: 18	Next Scheduled EDR Contact: 10/10/2011
	Data Release Frequency: No Update Planned

DRYCLEANERS: Cleaner Facilities

A list of drycleaner related facilities that have EPA ID numbers. These are facilities with certain SIC codes: power laundries, family and commercial; garment pressing and cleaner's agents; linen supply; coin-operated laundries and cleaning; drycleaning plants, except rugs; carpet and upholster cleaning; industrial launderers; laundry and garment services.

Date of Government Version: 09/15/2010	Source: Department of Toxic Substance Control
Date Data Arrived at EDR: 09/16/2010	Telephone: 916-327-4498
Date Made Active in Reports: 09/29/2010	Last EDR Contact: 06/13/2011
Number of Days to Update: 13	Next Scheduled EDR Contact: 09/26/2011
	Data Release Frequency: Annually

WIP: Well Investigation Program Case List

Well Investigation Program case in the San Gabriel and San Fernando Valley area.

Date of Government Version: 07/03/2009 Date Data Arrived at EDR: 07/21/2009 Date Made Active in Reports: 08/03/2009 Number of Days to Update: 13 Source: Los Angeles Water Quality Control Board Telephone: 213-576-6726 Last EDR Contact: 07/01/2011 Next Scheduled EDR Contact: 10/17/2011 Data Release Frequency: Varies

HAZNET: Facility and Manifest Data

Facility and Manifest Data. The data is extracted from the copies of hazardous waste manifests received each year by the DTSC. The annual volume of manifests is typically 700,000 - 1,000,000 annually, representing approximately 350,000 - 500,000 shipments. Data are from the manifests submitted without correction, and therefore many contain some invalid values for data elements such as generator ID, TSD ID, waste category, and disposal method.

Date of Government Version: 12/31/2009 Date Data Arrived at EDR: 07/07/2010 Date Made Active in Reports: 08/12/2010 Number of Days to Update: 36 Source: California Environmental Protection Agency Telephone: 916-255-1136 Last EDR Contact: 07/19/2011 Next Scheduled EDR Contact: 10/31/2011 Data Release Frequency: Annually

EMI: Emissions Inventory Data

Toxics and criteria pollutant emissions data collected by the ARB and local air pollution agencies.

Date of Government Version: 12/31/2008	
Date Data Arrived at EDR: 09/29/2010	
Date Made Active in Reports: 10/18/2010	
Number of Days to Update: 19	

Source: California Air Resources Board Telephone: 916-322-2990 Last EDR Contact: 06/30/2011 Next Scheduled EDR Contact: 10/10/2011 Data Release Frequency: Varies

INDIAN RESERV: Indian Reservations

This map layer portrays Indian administered lands of the United States that have any area equal to or greater than 640 acres.

Date of Government Version: 12/31/2005	Source: USGS
Date Data Arrived at EDR: 12/08/2006	Telephone: 202-208-3710
Date Made Active in Reports: 01/11/2007	Last EDR Contact: 07/22/2011
Number of Days to Update: 34	Next Scheduled EDR Contact: 10/31/2011
	Data Release Frequency: Semi-Annually

SCRD DRYCLEANERS: State Coalition for Remediation of Drycleaners Listing

The State Coalition for Remediation of Drycleaners was established in 1998, with support from the U.S. EPA Office of Superfund Remediation and Technology Innovation. It is comprised of representatives of states with established drycleaner remediation programs. Currently the member states are Alabama, Connecticut, Florida, Illinois, Kansas, Minnesota, Missouri, North Carolina, Oregon, South Carolina, Tennessee, Texas, and Wisconsin.

Date of Government Version: 03/07/2011	Source:
Date Data Arrived at EDR: 03/09/2011	Telephor
Date Made Active in Reports: 05/02/2011	Last EDF
Number of Days to Update: 54	Next Sch

Source: Environmental Protection Agency Telephone: 615-532-8599 Last EDR Contact: 07/15/2011 Next Scheduled EDR Contact: 11/07/2011 Data Release Frequency: Varies

PROC: Certified Processors Database A listing of certified processors.		
Date of Government Version: 06/01/2011 Date Data Arrived at EDR: 06/21/2011 Date Made Active in Reports: 07/15/2011 Number of Days to Update: 24	Source: Department of Conservation Telephone: 916-323-3836 Last EDR Contact: 06/21/2011 Next Scheduled EDR Contact: 10/03/2011 Data Release Frequency: Quarterly	
	WMP) ensures the proper handling and disposal of medical waste by permitting int Facilities (PDF) and Transfer Stations (PDF) throughout the	
Date of Government Version: 06/09/2011 Date Data Arrived at EDR: 06/16/2011 Date Made Active in Reports: 07/15/2011 Number of Days to Update: 29	Source: Department of Public Health Telephone: 916-558-1784 Last EDR Contact: 06/14/2011 Next Scheduled EDR Contact: 09/26/2011 Data Release Frequency: Varies	
COAL ASH DOE: Sleam-Electric Plan Operation Da A listing of power plants that store ash in surfa		
Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 08/07/2009 Date Made Active in Reports: 10/22/2009 Number of Days to Update: 76	Source: Department of Energy Telephone: 202-586-8719 Last EDR Contact: 07/18/2011 Next Scheduled EDR Contact: 10/31/2011 Data Release Frequency: Varies	
COAL ASH EPA: Coal Combustion Residues Surface Impoundments List A listing of coal combustion residues surface impoundments with high hazard potential ratings.		
Date of Government Version: 08/17/2010 Date Data Arrived at EDR: 01/03/2011 Date Made Active in Reports: 03/21/2011 Number of Days to Update: 77	Source: Environmental Protection Agency Telephone: N/A Last EDR Contact: 06/14/2011 Next Scheduled EDR Contact: 09/26/2011 Data Release Frequency: Varies	
person to transport hazardous wastes unless t	atabase alifornia, unless specifically exempted, it is unlawful for any he person holds a valid registration issued by DTSC. A hazardous ear and is assigned a unique registration number.	
Date of Government Version: 04/19/2011 Date Data Arrived at EDR: 04/19/2011 Date Made Active in Reports: 05/12/2011 Number of Days to Update: 23	Source: Department of Toxic Substances Control Telephone: 916-440-7145 Last EDR Contact: 07/19/2011 Next Scheduled EDR Contact: 10/31/2011 Data Release Frequency: Quarterly	
HWP: EnviroStor Permitted Facilities Listing Detailed information on permitted hazardous w	vaste facilities and corrective action ("cleanups") tracked in EnviroStor.	
Date of Government Version: 08/09/2010 Date Data Arrived at EDR: 08/11/2010 Date Made Active in Reports: 08/20/2010 Number of Days to Update: 9	Source: Department of Toxic Substances Control Telephone: 916-323-3400 Last EDR Contact: 06/03/2011 Next Scheduled EDR Contact: 09/12/2011 Data Release Frequency: Quarterly	
FINANCIAL ASSURANCE 2: Financial Assurance I A listing of financial assurance information for	nformation Listing solid waste facilities. Financial assurance is intended to ensure	

A listing of financial assurance information for solid waste facilities. Financial assurance is intended to ensure that resources are available to pay for the cost of closure, post-closure care, and corrective measures if the owner or operator of a regulated facility is unable or unwilling to pay.

Date of Government Version: 03/15/2011 Date Data Arrived at EDR: 03/16/2011 Date Made Active in Reports: 04/26/2011 Number of Days to Update: 41 Source: California Integrated Waste Management Board Telephone: 916-341-6066 Last EDR Contact: 07/22/2011 Next Scheduled EDR Contact: 09/05/2011 Data Release Frequency: Varies

FINANCIAL ASSURANCE 1: Financial Assurance Information Listing Financial Assurance information

Date of Government Version: 03/01/2007	Source: Department of Toxic Substances Control
Date Data Arrived at EDR: 06/01/2007	Telephone: 916-255-3628
Date Made Active in Reports: 06/29/2007	Last EDR Contact: 08/05/2011
Number of Days to Update: 28	Next Scheduled EDR Contact: 11/14/2011
	Data Release Frequency: Varies

FEDLAND: Federal and Indian Lands

Federally and Indian administrated lands of the United States. Lands included are administrated by: Army Corps of Engineers, Bureau of Reclamation, National Wild and Scenic River, National Wildlife Refuge, Public Domain Land, Wilderness, Wilderness Study Area, Wildlife Management Area, Bureau of Indian Affairs, Bureau of Land Management, Department of Justice, Forest Service, Fish and Wildlife Service, National Park Service.

Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 02/06/2006 Date Made Active in Reports: 01/11/2007 Number of Days to Update: 339

Source: U.S. Geological Survey Telephone: 888-275-8747 Last EDR Contact: 07/22/2011 Next Scheduled EDR Contact: 10/31/2011 Data Release Frequency: N/A

PCB TRANSFORMER: PCB Transformer Registration Database

The database of PCB transformer registrations that includes all PCB registration submittals.

Date of Government Version: 01/01/2008 Date Data Arrived at EDR: 02/18/2009 Date Made Active in Reports: 05/29/2009 Number of Days to Update: 100 Source: Environmental Protection Agency Telephone: 202-566-0517 Last EDR Contact: 08/05/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Varies

EDR PROPRIETARY RECORDS

EDR Proprietary Records

Manufactured Gas Plants: EDR Proprietary Manufactured Gas Plants

The EDR Proprietary Manufactured Gas Plant Database includes records of coal gas plants (manufactured gas plants) compiled by EDR's researchers. Manufactured gas sites were used in the United States from the 1800's to 1950's to produce a gas that could be distributed and used as fuel. These plants used whale oil, rosin, coal, or a mixture of coal, oil, and water that also produced a significant amount of waste. Many of the byproducts of the gas production, such as coal tar (oily waste containing volatile and non-volatile chemicals), sludges, oils and other compounds are potentially hazardous to human health and the environment. The byproduct from this process was frequently disposed of directly at the plant site and can remain or spread slowly, serving as a continuous source of soil and groundwater contamination.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned

EDR Historical Auto Stations: EDR Proprietary Historic Gas Stations

EDR has searched selected national collections of business directories and has collected listings of potential gas station/filling station/service station sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include gas station/filling station/service station establishments. The categories reviewed included, but were not limited to gas, gas station, gasoline station, filling station, auto, automobile repair, auto service station, service station, etc.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR Historical Cleaners: EDR Proprietary Historic Dry Cleaners

EDR has searched selected national collections of business directories and has collected listings of potential dry cleaner sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include dry cleaning establishments. The categories reviewed included, but were not limited to dry cleaners, cleaners, laundry, laundromat, cleaning/laundry, wash & dry etc.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

COUNTY RECORDS

ALAMEDA COUNTY:

Contaminated Sites

A listing of contaminated sites overseen by the Toxic Release Program (oil and groundwater contamination from chemical releases and spills) and the Leaking Underground Storage Tank Program (soil and ground water contamination from leaking petroleum USTs).

Date of Government Version: 04/12/2011 Date Data Arrived at EDR: 04/15/2011 Date Made Active in Reports: 05/12/2011 Number of Days to Update: 27 Source: Alameda County Environmental Health Services Telephone: 510-567-6700 Last EDR Contact: 07/18/2011 Next Scheduled EDR Contact: 10/17/2011 Data Release Frequency: Semi-Annually

Underground Tanks

Underground storage tank sites located in Alameda county.

Date of Government Version: 04/12/2011 Date Data Arrived at EDR: 04/15/2011 Date Made Active in Reports: 05/18/2011 Number of Days to Update: 33 Source: Alameda County Environmental Health Services Telephone: 510-567-6700 Last EDR Contact: 07/18/2011 Next Scheduled EDR Contact: 10/17/2011 Data Release Frequency: Semi-Annually

BUTTE COUNTY:

CUPA Facility Listing Cupa facility list.

> Date of Government Version: 03/29/2011 Date Data Arrived at EDR: 04/20/2011 Date Made Active in Reports: 05/17/2011 Number of Days to Update: 27

Source: Public Health Department Telephone: 530-538-7149 Last EDR Contact: 07/18/2011 Next Scheduled EDR Contact: 10/31/2011 Data Release Frequency: Varies

COLUSA COUNTY:

CUPA Facility List Cupa facility list.

Date of Government Version: 12/01/2010 Date Data Arrived at EDR: 04/20/2011 Date Made Active in Reports: 05/17/2011 Number of Days to Update: 27 Source: Health & Human Services Telephone: 530-458-0396 Last EDR Contact: 08/01/2011 Next Scheduled EDR Contact: 10/31/2011 Data Release Frequency: Varies

CONTRA COSTA COUNTY:

Site List

List includes sites from the underground tank, hazardous waste generator and business plan/2185 programs.

Date of Government Version: 06/13/2011 Date Data Arrived at EDR: 06/14/2011 Date Made Active in Reports: 07/15/2011 Number of Days to Update: 31 Source: Contra Costa Health Services Department Telephone: 925-646-2286 Last EDR Contact: 06/13/2011 Next Scheduled EDR Contact: 08/22/2011 Data Release Frequency: Semi-Annually

EL DORADO COUNTY:

CUPA Facility List CUPA facility list.

Date of Government Version: 03/28/2011 Date Data Arrived at EDR: 05/13/2011 Date Made Active in Reports: 06/15/2011 Number of Days to Update: 33

Source: El Dorado County Environmental Management Department Telephone: 530-621-6623 Last EDR Contact: 08/08/2011 Next Scheduled EDR Contact: 11/21/2011 Data Release Frequency: Varies

FRESNO COUNTY:

CUPA Resources List

Certified Unified Program Agency. CUPA's are responsible for implementing a unified hazardous materials and hazardous waste management regulatory program. The agency provides oversight of businesses that deal with hazardous materials, operate underground storage tanks or aboveground storage tanks.

Date of Government Version: 04/15/2011 Date Data Arrived at EDR: 04/19/2011 Date Made Active in Reports: 05/12/2011 Number of Days to Update: 23 Source: Dept. of Community Health Telephone: 559-445-3271 Last EDR Contact: 07/18/2011 Next Scheduled EDR Contact: 10/31/2011 Data Release Frequency: Semi-Annually

HUMBOLDT COUNTY:

CUPA Facility List

CUPA facility list.

Date of Government Version: 02/08/2011 Date Data Arrived at EDR: 03/03/2011 Date Made Active in Reports: 03/24/2011 Number of Days to Update: 21 Source: Humboldt County Environmental Health Telephone: N/A Last EDR Contact: 06/30/2011 Next Scheduled EDR Contact: 10/10/2011 Data Release Frequency: Varies

INYO COUNTY:

CUPA Facility List

Cupa facility list.

Date of Government Version: 06/13/2011 Date Data Arrived at EDR: 06/14/2011 Date Made Active in Reports: 07/19/2011 Number of Days to Update: 35 Source: Inyo County Environmental Health Services Telephone: 760-878-0238 Last EDR Contact: 06/13/2011 Next Scheduled EDR Contact: 09/12/2011 Data Release Frequency: Varies

KERN COUNTY:

Underground Storage Tank Sites & Tank Listing Kern County Sites and Tanks Listing.

> Date of Government Version: 08/31/2010 Date Data Arrived at EDR: 09/01/2010 Date Made Active in Reports: 09/30/2010 Number of Days to Update: 29

Source: Kern County Environment Health Services Department Telephone: 661-862-8700 Last EDR Contact: 06/16/2011 Next Scheduled EDR Contact: 08/29/2011 Data Release Frequency: Quarterly

KINGS COUNTY:

CUPA Facility List

A listing of sites included in the county?s Certified Unified Program Agency database. California?s Secretary for Environmental Protection established the unified hazardous materials and hazardous waste regulatory program as required by chapter 6.11 of the California Health and Safety Code. The Unified Program consolidates the administration, permits, inspections, and enforcement activities.

Date of Government Version: 06/09/2011 Date Data Arrived at EDR: 06/09/2011 Date Made Active in Reports: 07/08/2011 Number of Days to Update: 29 Source: Kings County Department of Public Health Telephone: 559-584-1411 Last EDR Contact: 05/31/2011 Next Scheduled EDR Contact: 09/12/2011 Data Release Frequency: Varies

LOS ANGELES COUNTY:

San Gabriel Valley Areas of Concern

San Gabriel Valley areas where VOC contamination is at or above the MCL as designated by region 9 EPA office.

Date of Government Version: 03/30/2009	Source: EPA Region 9
Date Data Arrived at EDR: 03/31/2009	Telephone: 415-972-3178
Date Made Active in Reports: 10/23/2009	Last EDR Contact: 03/28/2011
Number of Days to Update: 206	Next Scheduled EDR Contact: 10/10/2011
	Data Release Frequency: No Update Planned

HMS: Street Number List

Industrial Waste and Underground Storage Tank Sites.

Date of Government Version: 03/31/2011	
Date Data Arrived at EDR: 06/09/2011	
Date Made Active in Reports: 06/15/2011	
Number of Days to Update: 6	

Source: Department of Public Works Telephone: 626-458-3517 Last EDR Contact: 07/18/2011 Next Scheduled EDR Contact: 10/31/2011 Data Release Frequency: Semi-Annually

List of Solid Waste Facilities

Solid Waste Facilities in Los Angeles County.

Date of Government Version: 04/25/2011 Date Data Arrived at EDR: 04/28/2011 Date Made Active in Reports: 05/17/2011 Number of Days to Update: 19 Source: La County Department of Public Works Telephone: 818-458-5185 Last EDR Contact: 07/27/2011 Next Scheduled EDR Contact: 11/07/2011 Data Release Frequency: Varies

City of Los Angeles Landfills

Landfills owned and maintained by the City of Los Angeles.

Date of Government Version: 03/05/2009	Source: Engineering & Construction Division
Date Data Arrived at EDR: 03/10/2009	Telephone: 213-473-7869
Date Made Active in Reports: 04/08/2009	Last EDR Contact: 05/24/2011
Number of Days to Update: 29	Next Scheduled EDR Contact: 09/05/2011
	Data Release Frequency: Varies

Site Mitigation List

Industrial sites that have had some sort of spill or complaint.

Date of Government Version: 02/09/2011	Source: Community Health Services
Date Data Arrived at EDR: 02/09/2011	Telephone: 323-890-7806
Date Made Active in Reports: 03/04/2011	Last EDR Contact: 07/22/2011
Number of Days to Update: 23	Next Scheduled EDR Contact: 11/07/2011
	Data Release Frequency: Annually

City of El Segundo Underground Storage Tank

Underground storage tank sites located in El Segundo city.

Date of Government Version: 02/03/2011Source: CityDate Data Arrived at EDR: 02/08/2011Telephone:Date Made Active in Reports: 03/03/2011Last EDR CoNumber of Days to Update: 23Next Schedu

Source: City of El Segundo Fire Department Telephone: 310-524-2236 Last EDR Contact: 07/25/2011 Next Scheduled EDR Contact: 11/07/2011 Data Release Frequency: Semi-Annually

City of Long Beach Underground Storage Tank

Underground storage tank sites located in the city of Long Beach.

Date of Government Version: 03/28/2003	Source: City of Long Beach Fire Department
Date Data Arrived at EDR: 10/23/2003	Telephone: 562-570-2563
Date Made Active in Reports: 11/26/2003	Last EDR Contact: 05/02/2011
Number of Days to Update: 34	Next Scheduled EDR Contact: 11/14/2011
	Data Release Frequency: Annually

City of Torrance Underground Storage Tank

Underground storage tank sites located in the city of Torrance.

Date of Government Version: 04/18/2011Source: City of Torrance Fire DepartmentDate Data Arrived at EDR: 04/20/2011Telephone: 310-618-2973Date Made Active in Reports: 05/18/2011Last EDR Contact: 07/18/2011Number of Days to Update: 28Next Scheduled EDR Contact: 10/31/2011Data Release Frequency: Semi-Annually

MADERA COUNTY:

CUPA Facility List

A listing of sites included in the county?s Certified Unified Program Agency database. California?s Secretary for Environmental Protection established the unified hazardous materials and hazardous waste regulatory program as required by chapter 6.11 of the California Health and Safety Code. The Unified Program consolidates the administration, permits, inspections, and enforcement activities.

Date of Government Version: 06/07/2011 Date Data Arrived at EDR: 06/08/2011 Date Made Active in Reports: 07/08/2011 Number of Days to Update: 30 Source: Madera County Environmental Health Telephone: 559-675-7823 Last EDR Contact: 05/31/2011 Next Scheduled EDR Contact: 09/12/2011 Data Release Frequency: Varies

MARIN COUNTY:

Underground Storage Tank Sites Currently permitted USTs in Marin County.

> Date of Government Version: 04/15/2011 Date Data Arrived at EDR: 04/26/2011 Date Made Active in Reports: 05/18/2011 Number of Days to Update: 22

Source: Public Works Department Waste Management Telephone: 415-499-6647 Last EDR Contact: 07/11/2011 Next Scheduled EDR Contact: 10/24/2011 Data Release Frequency: Semi-Annually

MERCED COUNTY:

CUPA Facility List CUPA facility list.

Date of Government Version: 06/06/2011 Date Data Arrived at EDR: 06/06/2011 Date Made Active in Reports: 06/15/2011 Number of Days to Update: 9 Source: Merced County Environmental Health Telephone: 209-381-1094 Last EDR Contact: 05/31/2011 Next Scheduled EDR Contact: 09/12/2011 Data Release Frequency: Varies

MONTEREY COUNTY:

CUPA Facility Listing

CUPA Program listing from the Environmental Health Division.

Date of Government Version: 01/20/2011	Source: Monterey County Health Department
Date Data Arrived at EDR: 03/03/2011	Telephone: 831-796-1297
Date Made Active in Reports: 03/24/2011	Last EDR Contact: 06/20/2011
Number of Days to Update: 21	Next Scheduled EDR Contact: 09/12/2011
	Data Release Frequency: Varies

NAPA COUNTY:

Sites With Reported Contamination

A listing of leaking underground storage tank sites located in Napa county.

Source: Napa County Department of Environmental Management
Telephone: 707-253-4269
Last EDR Contact: 03/07/2011
Next Scheduled EDR Contact: 06/20/2011
Data Release Frequency: No Update Planned

Closed and Operating Underground Storage Tank Sites Underground storage tank sites located in Napa county.

Date of Government Version: 01/15/2008	Source: Napa County Department of Environmental Management
Date Data Arrived at EDR: 01/16/2008	Telephone: 707-253-4269
Date Made Active in Reports: 02/08/2008	Last EDR Contact: 06/06/2011
Number of Days to Update: 23	Next Scheduled EDR Contact: 09/19/2011
	Data Release Frequency: No Update Planned

NEVADA COUNTY:

CUPA Facility List CUPA facility list.		
Date of Government Version: 03/04/2011 Date Data Arrived at EDR: 05/12/2011 Date Made Active in Reports: 06/23/2011 Number of Days to Update: 42	Source: Community Development Agency Telephone: 530-265-1467 Last EDR Contact: 08/08/2011 Next Scheduled EDR Contact: 11/21/2011 Data Release Frequency: Varies	
ORANGE COUNTY:		
List of Industrial Site Cleanups Petroleum and non-petroleum spills.		
Date of Government Version: 05/02/2011 Date Data Arrived at EDR: 05/20/2011 Date Made Active in Reports: 06/15/2011 Number of Days to Update: 26	Source: Health Care Agency Telephone: 714-834-3446 Last EDR Contact: 05/16/2011 Next Scheduled EDR Contact: 08/29/2011 Data Release Frequency: Annually	
List of Underground Storage Tank Cleanups Orange County Underground Storage Tank Cleanups (LUST).		
Date of Government Version: 05/05/2011 Date Data Arrived at EDR: 05/20/2011 Date Made Active in Reports: 06/15/2011 Number of Days to Update: 26	Source: Health Care Agency Telephone: 714-834-3446 Last EDR Contact: 05/16/2011 Next Scheduled EDR Contact: 08/29/2011 Data Release Frequency: Quarterly	
List of Underground Storage Tank Facilities Orange County Underground Storage Tank Facilities (UST).		
Date of Government Version: 05/05/2011 Date Data Arrived at EDR: 05/17/2011 Date Made Active in Reports: 06/20/2011 Number of Days to Update: 34	Source: Health Care Agency Telephone: 714-834-3446 Last EDR Contact: 05/17/2011 Next Scheduled EDR Contact: 08/29/2011 Data Release Frequency: Quarterly	
PLACER COUNTY:		
Master List of Facilities List includes aboveground tanks, underground	tanks and cleanup sites.	
Date of Government Version: 06/20/2011 Date Data Arrived at EDR: 06/21/2011 Date Made Active in Reports: 07/08/2011 Number of Days to Update: 17	Source: Placer County Health and Human Services Telephone: 530-889-7312 Last EDR Contact: 06/13/2011 Next Scheduled EDR Contact: 09/26/2011 Data Release Frequency: Semi-Annually	
RIVERSIDE COUNTY:		

Listing of Underground Tank Cleanup Sites Riverside County Underground Storage Tank Cleanup Sites (LUST).

Date of Government Version: 04/26/2011Source: Department ofDate Data Arrived at EDR: 04/28/2011Telephone: 951-358-5Date Made Active in Reports: 05/17/2011Last EDR Contact: 06/Number of Days to Update: 19Next Scheduled EDR CDate Data Data Arrived at EDR: 04/28/2011Deta Data Arrived at EDR: 05/17/2011

Source: Department of Environmental Health Telephone: 951-358-5055 Last EDR Contact: 06/27/2011 Next Scheduled EDR Contact: 10/10/2011 Data Release Frequency: Quarterly

Underground Storage Tank Tank List Underground storage tank sites located in Riverside county.

Date of Government Version: 04/26/2011	Source: Department of Environmental Health
Date Data Arrived at EDR: 04/28/2011	Telephone: 951-358-5055
Date Made Active in Reports: 05/18/2011	Last EDR Contact: 06/27/2011
Number of Days to Update: 20	Next Scheduled EDR Contact: 10/10/2011
	Data Release Frequency: Quarterly

SACRAMENTO COUNTY:

Toxic Site Clean-Up List

List of sites where unauthorized releases of potentially hazardous materials have occurred.

Date of Government Version: 02/07/2011 Date Data Arrived at EDR: 04/28/2011 Date Made Active in Reports: 05/17/2011 Number of Days to Update: 19 Source: Sacramento County Environmental Management Telephone: 916-875-8406 Last EDR Contact: 07/08/2011 Next Scheduled EDR Contact: 10/24/2011 Data Release Frequency: Quarterly

Master Hazardous Materials Facility List

Any business that has hazardous materials on site - hazardous material storage sites, underground storage tanks, waste generators.

Date of Government Version: 02/07/2011 Date Data Arrived at EDR: 04/29/2011 Date Made Active in Reports: 05/17/2011 Number of Days to Update: 18 Source: Sacramento County Environmental Management Telephone: 916-875-8406 Last EDR Contact: 07/08/2011 Next Scheduled EDR Contact: 10/24/2011 Data Release Frequency: Quarterly

SAN BERNARDINO COUNTY:

Hazardous Material Permits

This listing includes underground storage tanks, medical waste handlers/generators, hazardous materials handlers, hazardous waste generators, and waste oil generators/handlers.

Date of Government Version: 06/09/2011	Source: San Bernardino County Fire Department Hazardous Materials Division
Date Data Arrived at EDR: 06/09/2011	Telephone: 909-387-3041
Date Made Active in Reports: 06/15/2011	Last EDR Contact: 05/16/2011
Number of Days to Update: 6	Next Scheduled EDR Contact: 08/29/2011
	Data Release Frequency: Quarterly

SAN DIEGO COUNTY:

Hazardous Materials Management Division Database

The database includes: HE58 - This report contains the business name, site address, business phone number, establishment 'H' permit number, type of permit, and the business status. HE17 - In addition to providing the same information provided in the HE58 listing, HE17 provides inspection dates, violations received by the establishment, hazardous waste generated, the quantity, method of storage, treatment/disposal of waste and the hauler, and information on underground storage tanks. Unauthorized Release List - Includes a summary of environmental contamination cases in San Diego County (underground tank cases, non-tank cases, groundwater contamination, and soil contamination are included.)

Date of Government Version: 09/09/2010 Date Data Arrived at EDR: 09/15/2010 Date Made Active in Reports: 09/29/2010 Number of Days to Update: 14 Source: Hazardous Materials Management Division Telephone: 619-338-2268 Last EDR Contact: 06/17/2011 Next Scheduled EDR Contact: 09/26/2011 Data Release Frequency: Quarterly

Solid Waste Facilities

San Diego County Solid Waste Facilities.

Date of Government Version: 10/01/2010 Date Data Arrived at EDR: 11/16/2010 Date Made Active in Reports: 01/25/2011 Number of Days to Update: 70

Source: Department of Health Services Telephone: 619-338-2209 Last EDR Contact: 08/01/2011 Next Scheduled EDR Contact: 11/14/2011 Data Release Frequency: Varies

Environmental Case Listing

The listing contains all underground tank release cases and projects pertaining to properties contaminated with hazardous substances that are actively under review by the Site Assessment and Mitigation Program.

Date of Government Version: 03/23/2010 Date Data Arrived at EDR: 06/15/2010 Date Made Active in Reports: 07/09/2010 Number of Days to Update: 24

Source: San Diego County Department of Environmental Health Telephone: 619-338-2371 Last EDR Contact: 06/14/2011 Next Scheduled EDR Contact: 09/26/2011 Data Release Frequency: No Update Planned

SAN FRANCISCO COUNTY:

Local Oversite Facilities

A listing of leaking underground storage tank sites located in San Francisco county.

Date of Government Version: 09/19/2008	Source: Department Of Public Health San Francisco County
Date Data Arrived at EDR: 09/19/2008	Telephone: 415-252-3920
Date Made Active in Reports: 09/29/2008	Last EDR Contact: 05/16/2011
Number of Days to Update: 10	Next Scheduled EDR Contact: 08/16/2011
	Data Release Frequency: Quarterly

Underground Storage Tank Information

Underground storage tank sites located in San Francisco county.

Date of Government Version: 11/29/2010	Source: Department of Public Health
Date Data Arrived at EDR: 03/10/2011	Telephone: 415-252-3920
Date Made Active in Reports: 03/15/2011	Last EDR Contact: 05/31/2011
Number of Days to Update: 5	Next Scheduled EDR Contact: 08/29/2011
	Data Release Frequency: Quarterly

SAN JOAQUIN COUNTY:

San Joaquin Co. UST

A listing of underground storage tank locations in San Joaquin county.

Date of Government Version: 06/27/2011
Date Data Arrived at EDR: 06/29/2011
Date Made Active in Reports: 07/08/2011
Number of Days to Update: 9

Source: Environmental Health Department Telephone: N/A Last EDR Contact: 06/27/2011 Next Scheduled EDR Contact: 10/10/2011 Data Release Frequency: Semi-Annually

SAN LUIS OBISPO COUNTY:

CUPA Facility List

Cupa Facility List.

Date of Government Version: 05/31/2011 Date Data Arrived at EDR: 05/31/2011 Date Made Active in Reports: 07/08/2011 Number of Days to Update: 38

Source: San Luis Obispo County Public Health Department Telephone: 805-781-5596 Last EDR Contact: 05/31/2011 Next Scheduled EDR Contact: 09/12/2011 Data Release Frequency: Varies

SAN MATEO COUNTY:

Business Inventory

List includes Hazardous Materials Business Plan, hazardous waste generators, and underground storage tanks.

Date of Government Version: 04/19/2011 Date Data Arrived at EDR: 04/20/2011 Date Made Active in Reports: 05/17/2011 Number of Days to Update: 27 Source: San Mateo County Environmental Health Services Division Telephone: 650-363-1921 Last EDR Contact: 06/20/2011 Next Scheduled EDR Contact: 09/05/2011 Data Release Frequency: Annually

Fuel Leak List

A listing of leaking underground storage tank sites located in San Mateo county.

Date of Government Version: 06/20/2011Source: San Mateo County Environmental Health Services DivisionDate Data Arrived at EDR: 06/21/2011Telephone: 650-363-1921Date Made Active in Reports: 07/15/2011Last EDR Contact: 06/20/2011Number of Days to Update: 24Next Scheduled EDR Contact: 09/05/2011Data Release Frequency: Semi-Annually

SANTA BARBARA COUNTY:

CUPA Facility Listing

CUPA Program Listing from the Environmental Health Services division.

Date of Government Version: 11/22/2010	Source: Santa Barbara County Public Health Department
Date Data Arrived at EDR: 03/03/2011	Telephone: 805-686-8167
Date Made Active in Reports: 03/24/2011	Last EDR Contact: 06/29/2011
Number of Days to Update: 21	Next Scheduled EDR Contact: 09/12/2011
	Data Release Frequency: Varies

SANTA CLARA COUNTY:

HIST LUST - Fuel Leak Site Activity Report

A listing of open and closed leaking underground storage tanks. This listing is no longer updated by the county. Leaking underground storage tanks are now handled by the Department of Environmental Health.

Date of Government Version: 03/29/2005 Date Data Arrived at EDR: 03/30/2005 Date Made Active in Reports: 04/21/2005 Number of Days to Update: 22 Source: Santa Clara Valley Water District Telephone: 408-265-2600 Last EDR Contact: 03/23/2009 Next Scheduled EDR Contact: 06/22/2009 Data Release Frequency: No Update Planned

LOP Listing

A listing of leaking underground storage tanks located in Santa Clara county.

Date of Government Version: 05/29/2009Source: Department of Environmental HealthDate Data Arrived at EDR: 06/01/2009Telephone: 408-918-3417Date Made Active in Reports: 06/15/2009Last EDR Contact: 07/20/2011Number of Days to Update: 14Next Scheduled EDR Contact: 09/19/2011Data Release Frequency: Annually

Hazardous Material Facilities

Hazardous material facilities, including underground storage tank sites.

Date of Government Version: 08/31/2009	Sc
Date Data Arrived at EDR: 08/31/2009	Te
Date Made Active in Reports: 09/18/2009	La
Number of Days to Update: 18	Ne

Source: City of San Jose Fire Department Telephone: 408-535-7694 Last EDR Contact: 06/13/2011 Next Scheduled EDR Contact: 08/29/2011 Data Release Frequency: Annually

SANTA CRUZ COUNTY:

CUPA Facility List

CUPA facility listing.

Date of Government Version: 05/31/2011 Date Data Arrived at EDR: 05/31/2011 Date Made Active in Reports: 07/08/2011 Number of Days to Update: 38 Source: Santa Cruz County Environmental Health Telephone: 831-464-2761 Last EDR Contact: 05/31/2011 Next Scheduled EDR Contact: 09/12/2011 Data Release Frequency: Varies

SHASTA COUNTY:

CUPA Facility List Cupa Facility List.

Data of Covernment V

Date of Government Version: 05/31/2011 Date Data Arrived at EDR: 05/31/2011 Date Made Active in Reports: 07/08/2011 Number of Days to Update: 38 Source: Shasta County Department of Resource Management Telephone: 530-225-5789 Last EDR Contact: 05/31/2011 Next Scheduled EDR Contact: 09/12/2011 Data Release Frequency: Varies

SOLANO COUNTY:

Leaking Underground Storage Tanks

A listing of leaking underground storage tank sites located in Solano county.

Date of Government Version: 06/09/2011 Date Data Arrived at EDR: 06/29/2011 Date Made Active in Reports: 07/08/2011 Number of Days to Update: 9

Source: Solano County Department of Environmental Management Telephone: 707-784-6770 Last EDR Contact: 06/20/2011 Next Scheduled EDR Contact: 09/05/2011 Data Release Frequency: Quarterly

Underground Storage Tanks

Underground storage tank sites located in Solano county.

Date of Government Version: 06/09/2011	Source: Solano County Department of Environmental Management
Date Data Arrived at EDR: 07/01/2011	Telephone: 707-784-6770
Date Made Active in Reports: 07/13/2011	Last EDR Contact: 06/20/2011
Number of Days to Update: 12	Next Scheduled EDR Contact: 09/05/2011
	Data Release Frequency: Quarterly

SONOMA COUNTY:

Leaking Underground Storage Tank Sites

A listing of leaking underground storage tank sites located in Sonoma county.

Date of Government Version: 04/05/2011
Date Data Arrived at EDR: 04/06/2011
Date Made Active in Reports: 05/12/2011
Number of Days to Update: 36

Source: Department of Health Services Telephone: 707-565-6565 Last EDR Contact: 07/05/2011 Next Scheduled EDR Contact: 10/17/2011 Data Release Frequency: Quarterly

SUTTER COUNTY:

Underground Storage Tanks

Underground storage tank sites located in Sutter county.

Date of Government Version: 06/13/2011 Date Data Arrived at EDR: 06/14/2011 Date Made Active in Reports: 07/13/2011 Number of Days to Update: 29 Source: Sutter County Department of Agriculture Telephone: 530-822-7500 Last EDR Contact: 06/13/2011 Next Scheduled EDR Contact: 09/26/2011 Data Release Frequency: Semi-Annually

VENTURA COUNTY:

Business Plan, Hazardous Waste Producers, and Operating Underground Tanks The BWT list indicates by site address whether the Environmental Health Division has Business Plan (B), Waste Producer (W), and/or Underground Tank (T) information.

Date of Government Version: 04/26/2011 Date Data Arrived at EDR: 06/14/2011 Date Made Active in Reports: 07/15/2011 Number of Days to Update: 31 Source: Ventura County Environmental Health Division Telephone: 805-654-2813 Last EDR Contact: 05/24/2011 Next Scheduled EDR Contact: 09/05/2011 Data Release Frequency: Quarterly

Inventory of Illegal Abandoned and Inactive Sites

Ventura County Inventory of Closed, Illegal Abandoned, and Inactive Sites.

elephone: 805-654-2813 ast EDR Contact: 08/01/2011
ext Scheduled EDR Contact: 10/24/2011 ata Release Frequency: Annually

Listing of Underground Tank Cleanup Sites

Ventura County Underground Storage Tank Cleanup Sites (LUST).

Date of Government Version: 05/29/2008 Date Data Arrived at EDR: 06/24/2008 Date Made Active in Reports: 07/31/2008 Number of Days to Update: 37 Source: Environmental Health Division Telephone: 805-654-2813 Last EDR Contact: 05/24/2011 Next Scheduled EDR Contact: 09/05/2011 Data Release Frequency: Quarterly

Medical Waste Program List

To protect public health and safety and the environment from potential exposure to disease causing agents, the Environmental Health Division Medical Waste Program regulates the generation, handling, storage, treatment and disposal of medical waste throughout the County.

Date of Government Version: 04/26/2011	Source: Ventura County Resource Management Agency
Date Data Arrived at EDR: 05/03/2011	Telephone: 805-654-2813
Date Made Active in Reports: 06/15/2011	Last EDR Contact: 08/01/2011
Number of Days to Update: 43	Next Scheduled EDR Contact: 11/14/2011
	Data Release Frequency: Quarterly

Underground Tank Closed Sites List

Ventura County Operating Underground Storage Tank Sites (UST)/Underground Tank Closed Sites List.

Date of Government Version: 05/25/2011	Source: Environme
Date Data Arrived at EDR: 06/21/2011	Telephone: 805-65
Date Made Active in Reports: 07/13/2011	Last EDR Contact:
Number of Days to Update: 22	Next Scheduled ED

Source: Environmental Health Division Telephone: 805-654-2813 Last EDR Contact: 06/21/2011 Next Scheduled EDR Contact: 10/03/2011 Data Release Frequency: Quarterly

YOLO COUNTY:

Underground Storage Tank Comprehensive Facility Report Underground storage tank sites located in Yolo county.

Date of Government Version: 04/26/2011 Date Data Arrived at EDR: 05/03/2011 Date Made Active in Reports: 06/20/2011 Number of Days to Update: 48 Source: Yolo County Department of Health Telephone: 530-666-8646 Last EDR Contact: 07/25/2011 Next Scheduled EDR Contact: 10/24/2011 Data Release Frequency: Annually

YUBA COUNTY:

CUPA Facility List

CUPA facility listing for Yuba County.

Date of Government Version: 12/31/2010 Date Data Arrived at EDR: 05/12/2011 Date Made Active in Reports: 06/15/2011 Number of Days to Update: 34 Source: Yuba County Environmental Health Department Telephone: 530-749-7523 Last EDR Contact: 08/08/2011 Next Scheduled EDR Contact: 11/21/2011 Data Release Frequency: Varies

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

CT MANIFEST: Hazardous Waste Manifest Data

Facility and manifest data. Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a tsd facility.

Date of Government Version: 12/31/2007 Date Data Arrived at EDR: 08/26/2009 Date Made Active in Reports: 09/11/2009 Number of Days to Update: 16	Source: Department of Environmental Protection Telephone: 860-424-3375 Last EDR Contact: 05/26/2011 Next Scheduled EDR Contact: 09/05/2011 Data Release Frequency: Annually
NJ MANIFEST: Manifest Information Hazardous waste manifest information.	
Date of Government Version: 12/31/2009 Date Data Arrived at EDR: 07/22/2010 Date Made Active in Reports: 08/26/2010 Number of Days to Update: 35	Source: Department of Environmental Protection Telephone: N/A Last EDR Contact: 07/20/2011 Next Scheduled EDR Contact: 10/31/2011 Data Release Frequency: Annually

NY MANIFEST: Facility and Manifest Data

Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a TSD facility.

Date of Government Version: 12/31/2010 Date Data Arrived at EDR: 05/12/2011 Date Made Active in Reports: 05/24/2011	Source: Department of Environmental Conservation Telephone: 518-402-8651 Last EDR Contact: 05/12/2011
Number of Days to Update: 12	Next Scheduled EDR Contact: 08/22/2011
	Data Release Frequency: Annually

PA MANIFEST: Manifest Information Hazardous waste manifest information.	
Date of Government Version: 12/31/2008 Date Data Arrived at EDR: 12/01/2009 Date Made Active in Reports: 12/14/2009 Number of Days to Update: 13	Source: Department of Environmental Protection Telephone: 717-783-8990 Last EDR Contact: 07/15/2011 Next Scheduled EDR Contact: 10/10/2011 Data Release Frequency: Annually
RI MANIFEST: Manifest information Hazardous waste manifest information	
Date of Government Version: 12/31/2010 Date Data Arrived at EDR: 06/24/2011 Date Made Active in Reports: 06/30/2011 Number of Days to Update: 6	Source: Department of Environmental Management Telephone: 401-222-2797 Last EDR Contact: 05/31/2011 Next Scheduled EDR Contact: 09/12/2011 Data Release Frequency: Annually
WI MANIFEST: Manifest Information Hazardous waste manifest information.	
Date of Government Version: 12/31/2009 Date Data Arrived at EDR: 07/06/2010 Date Made Active in Reports: 07/26/2010 Number of Days to Update: 20	Source: Department of Natural Resources Telephone: N/A Last EDR Contact: 06/20/2011 Next Scheduled EDR Contact: 10/03/2011 Data Release Frequency: Annually

Oil/Gas Pipelines: This data was obtained by EDR from the USGS in 1994. It is referred to by USGS as GeoData Digital Line Graphs from 1:100,000-Scale Maps. It was extracted from the transportation category including some oil, but primarily gas pipelines.

Electric Power Transmission Line Data Source: Rextag Strategies Corp. Telephone: (281) 769-2247 U.S. Electric Transmission and Power Plants Systems Digital GIS Data

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

AHA Hospitals: Source: American Hospital Association, Inc. Telephone: 312-280-5991 The database includes a listing of hospitals based on the American Hospital Association's annual survey of hospitals. Medical Centers: Provider of Services Listing Source: Centers for Medicare & Medicaid Services Telephone: 410-786-3000 A listing of hospitals with Medicare provider number, produced by Centers of Medicare & Medicaid Services, a federal agency within the U.S. Department of Health and Human Services. Nursing Homes Source: National Institutes of Health Telephone: 301-594-6248 Information on Medicare and Medicaid certified nursing homes in the United States. **Public Schools** Source: National Center for Education Statistics Telephone: 202-502-7300 The National Center for Education Statistics' primary database on elementary and secondary public education in the United States. It is a comprehensive, annual, national statistical database of all public elementary and secondary schools and school districts, which contains data that are comparable across all states. **Private Schools** Source: National Center for Education Statistics Telephone: 202-502-7300 The National Center for Education Statistics' primary database on private school locations in the United States.

Daycare Centers: Licensed Facilities Source: Department of Social Services Telephone: 916-657-4041

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 2003 & 2011 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 and 2005 from the U.S. Fish and Wildlife Service.

Scanned Digital USGS 7.5' Topographic Map (DRG)

Source: United States Geologic Survey

A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey topographic map. The map images are made by scanning published paper maps on high-resolution scanners. The raster image is georeferenced and fit to the Universal Transverse Mercator (UTM) projection.

STREET AND ADDRESS INFORMATION

© 2010 Tele Atlas North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

GEOCHECK ®- PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

NORTHBROOK HOMES FAIRVIEW SITE 24850 FAIRVIEW AVENUE HAYWARD, CA 94542

TARGET PROPERTY COORDINATES

Latitude (North):	37.67840 - 37° 40' 42.2''
Longitude (West):	122.0425 - 122° 2' 33.0"
Universal Tranverse Mercator:	Zone 10
UTM X (Meters):	584434.8
UTM Y (Meters):	4170360.2
Elevation:	657 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map:	37122-F1 HAYWARD, CA
Most Recent Revision:	1980

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

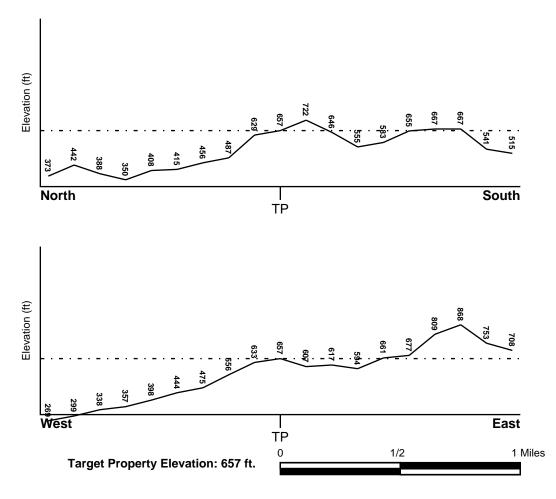
Assessment of the impact of contaminant migration generally has two principle investigative components:

- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).


TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General NNW

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Target Property County ALAMEDA, CA	FEMA Flood <u>Electronic Data</u> YES - refer to the Overview Map and Detail Map
Flood Plain Panel at Target Property:	06001C - FEMA DFIRM Flood data
Additional Panels in search area:	Not Reported
NATIONAL WETLAND INVENTORY	
<u>NWI Quad at Target Property</u> HAYWARD	NWI Electronic <u>Data Coverage</u> YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Site-Specific Hydrogeological Data*:

Search Radius:	1.25 miles
Status:	Not found

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

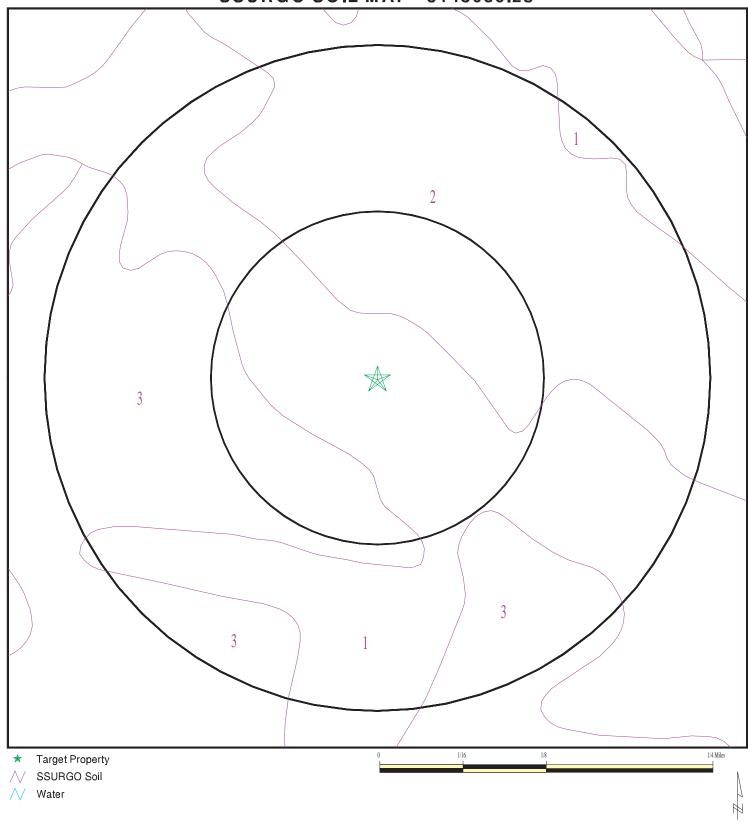
MAP ID Not Reported LOCATION FROM TP GENERAL DIRECTION GROUNDWATER FLOW

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.


ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era:	Mesozoic	Category:	Stratified Sequence
System:	Cretaceous		
Series:	Upper Cretaceous		
Code:	uK (decoded above as Era, System & 3	Series)	

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

	Northbrook Homes Fairview Site 24850 Fairview Avenue
	Hayward CA 94542
LAT/LONG:	37.6784 / 122.0425

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. The following information is based on Soil Conservation Service SSURGO data.

Soil Map ID: 1	
Soil Component Name:	Los Osos
Soil Surface Texture:	silty clay loam
Hydrologic Group:	Class C - Slow infiltration rates. Soils with layers impeding downward movement of water, or soils with moderately fine or fine textures.
Soil Drainage Class:	Well drained
Hydric Status: Not hydric	
Corrosion Potential - Uncoated Steel:	Moderate
Depth to Bedrock Min:	> 51 inches
Depth to Watertable Min:	> 0 inches

	Soil Layer Information						
	Βοι	indary		Classification		Saturated hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
1	0 inches	7 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	Not reported	Max: 0 Min: 0	Max: Min:
2	7 inches	29 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	Not reported	Max: 0 Min: 0	Max: Min:
3	29 inches	33 inches	weathered bedrock	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	Not reported	Max: 0 Min: 0	Max: Min:

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

Soil Component Name:	Millsholm
Soil Surface Texture:	silt loam
Hydrologic Group:	Class D - Very slow infiltration rates. Soils are clayey, have a high water table, or are shallow to an impervious layer.
Soil Drainage Class:	Well drained
Hydric Status: Not hydric	
Corrosion Potential - Uncoated Steel:	Moderate
Depth to Bedrock Min:	> 51 inches
Depth to Watertable Min:	> 0 inches

			Soil Layer	Information				
	Βοι	indary		Classi	fication	Saturated hydraulic		
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec		
1	0 inches	20 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	Not reported	Max: 0 Min: 0	Max: Min:	
2	20 inches	24 inches	unweathered bedrock	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	Not reported	Max: 0 Min: 0	Max: Min:	

Soil Map ID: 3	
Soil Component Name:	Los Osos
Soil Surface Texture:	silty clay loam
Hydrologic Group:	Class C - Slow infiltration rates. Soils with layers impeding downward movement of water, or soils with moderately fine or fine textures.
Soil Drainage Class:	Well drained

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Moderate

Depth to Bedrock Min: > 51 inches

Depth to Watertable Min: > 0 inches

Soil Layer Information									
	Βοι	Indary		Classi	fication	Saturated hydraulic			
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)		
1	0 inches	7 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	Not reported	Max: 0 Min: 0	Max: Min:		
2	7 inches	29 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	Not reported	Max: 0 Min: 0	Max: Min:		
3	29 inches	33 inches	weathered bedrock	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	Not reported	Max: 0 Min: 0	Max: Min:		

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE	SEARCH DISTANCE (miles)
Federal USGS	1.000
Federal FRDS PWS	Nearest PWS within 1 mile

State Database 1.000

FEDERAL USGS WELL INFORMATION

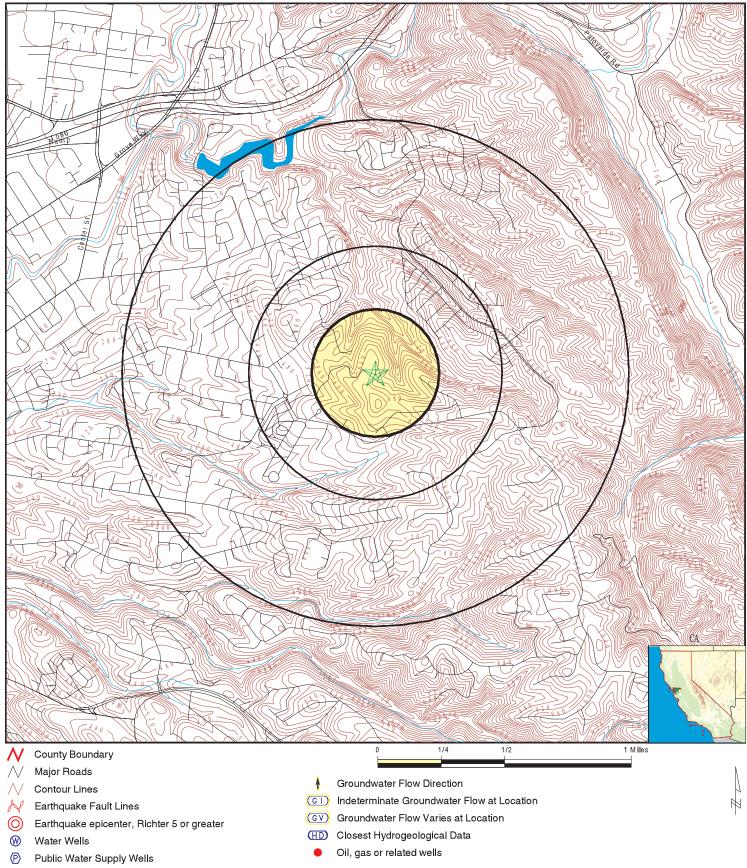
MAP ID No Wells Found WELL ID

LOCATION FROM TP

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

		LOCATION
MAP ID	WELL ID	FROM TP
No PWS System Found		


Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

MAP ID No Wells Found WELL ID

LOCATION FROM TP

PHYSICAL SETTING SOURCE MAP - 3143080.2s

Cluster of Multiple Icons

ADDRESS:

LAT/LONG:

CLIENT: Lamphier-Gregory CONTACT: Nathaniel Taylor SITE NAME: Northbrook Homes Fairview Site 24850 Fairview Avenue Hayward CA 94542 INQUIRY #: 3143080.2s 37.6784 / 122.0425 DATE: August 08, 2011 7:06 pm

Copyright © 2011 EDR, Inc. © 2010 Tele Atlas Rel. 07/2009.

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS RADON

AREA RADON INFORMATION

State Database: CA Radon

Radon Test Results

Zipcode	Num Tests	> 4 pCi/L
94542	3	0

Federal EPA Radon Zone for ALAMEDA County: 2

```
Note: Zone 1 indoor average level > 4 pCi/L.
: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.
: Zone 3 indoor average level < 2 pCi/L.
```

Federal Area Radon Information for ALAMEDA COUNTY, CA

Number of sites tested: 49

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area - 1st Floor	0.776 pCi/L	100%	0%	0%
Living Area - 2nd Floor	-0.400 pCi/L	100%	0%	0%
Basement	1.338 pCi/L	100%	0%	0%

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

Scanned Digital USGS 7.5' Topographic Map (DRG)

Source: United States Geologic Survey

A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey topographic map. The map images are made by scanning published paper maps on high-resolution scanners. The raster image is georeferenced and fit to the Universal Transverse Mercator (UTM) projection.

HYDROLOGIC INFORMATION

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 2003 & 2011 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 and 2005 from the U.S. Fish and Wildlife Service.

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Services

The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Services (NRCS) Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Services, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS) This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

STATE RECORDS

Water Well Database Source: Department of Water Resources Telephone: 916-651-9648

California Drinking Water Quality Database

Source: Department of Health Services

Telephone: 916-324-2319

The database includes all drinking water compliance and special studies monitoring for the state of California since 1984. It consists of over 3,200,000 individual analyses along with well and water system information.

OTHER STATE DATABASE INFORMATION

California Oil and Gas Well Locations Source: Department of Conservation Telephone: 916-323-1779 Oil and Gas well locations in the state.

RADON

State Database: CA Radon Source: Department of Health Services Telephone: 916-324-2208 Radon Database for California

Area Radon Information

Source: USGS Telephone: 703-356-4020 The National Radon Database has been developed by the U.S. Environmental Protection Agency (USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones Source: EPA Telephone: 703-356-4020 Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor radon levels.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

OTHER

Airport Landing Facilities: Private and public use landing facilities Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater Source: Department of Commerce, National Oceanic and Atmospheric Administration

California Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary fault lines, prepared in 1975 by the United State Geological Survey. Additional information (also from 1975) regarding activity at specific fault lines comes from California's Preliminary Fault Activity Map prepared by the California Division of Mines and Geology.

STREET AND ADDRESS INFORMATION

© 2010 Tele Atlas North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

APPENDIX G

Ruggeri, Jensen Azar,

Hydrology and Hydraulics Calculations for Tract 8057 – Lerob LLC, Alameda County, California

Hydrology and Hydraulics Calculations

for

Tract 8057 - Lerob LLC Alameda County, California

Prepared by:

RUGGERI-JENSEN-AZAR ENGINEERS · PLANNERS · SURVEYORS 4690 Chabot Drive, Suite 200 Pleasanton, CA 94588 (925) 227-9100

August 26, 2010

G:\job2009\091093\Hydro\Hydro-Report.doc

Storm Drain System Calculations

Storm Frequency 10 & 15 years Open & Closed System Calculations

· 2	Alameda County Method																				
16	<pre>lean Annual Precipitation = 23.00 inches</pre>										091093						Project:Lerob LLC				
2	ree Board Requirement = 1.75 feet									1	tract 8057						Design	:Jared	Frey		
Fi	le	= G:\J	ob2009	9\091	093\Hyd1	ro\Pond-9	Sys										Date:	08-27-20	10 Time	: 08:28:42am	
TLW_Hydr Hydrology						Hydraulics Page 1 of 6 version					sion 2.01f										
Pt	:	Area	dA	"C"	dCA	Sum	Sum	Time	Inten.	Q	#/=Dia/	Sf	Length	Vel.	Sect	Frict	Minor	HGL	MTC	Plan Flow	
	ŧ D	Descr.	base	"C"	G.Slope	A	dCA	of	"n"	CiA	SS Width	Sp	Dn		Time	Loss	Loss		HGL+	T.C. Cond.	
The second second second		(A	cres)			(Acres)	(Acres)	Conc		(cfs)) (in./ft.)		(ft.)	(fps)	(min)	(ft.)	(ft.)	(ft.)	F.B.	F.L. to Pt.	
DI	1		1.77	0.80	1.42	1.77	1.42	7.0	2.72								0.10	672.90	674.65	677.00 EB	
				0.80	1.00				0.014	3.85	1= 18.0	0.001	.6 278	2.2	2.1	0.43				672.00	
												0.005	0 0.80	4.0	1.2					DI2	
DI	2		2.41	0.80	1.93	4.18	3.34	8.2	2.52								0.45	672.17	673.92	678.40 SS*	
1				0.80	1.00				0.014	8.43	1= 18.0	0.007	5 200	4.8	0.7	1.49				670.60	
												0.100	0 1.12	14.9	0.2					OUT1	
)													Begi	nning	Water	Surf	ace =	623.25			

Storm Frequency 10 & 15 years Junction Loss Calculations Alameda County Method

							ALG	ineda count	y neenoo	•							
Mean	Mean Annual Precipitation = 23.00 inches Free Board Requirement = 1.75 feet							09109	3		Project:Lerob LLC						
Free 1							tract 8057					Design :Jared Frey					
File	= G:\Jol	62009\091	093\Hydro	o∖Pond	-Sys							Da	ite: 08-27-	2010 Time: 0	8:28:42am		
TLW_H	ydr		н	ydrolo	ах					Hydraul	ics	Pa	ige 2 of	6 versio	on 2.01f		
Point	Q2	CA2	a2		Q2^2 Cos(0)	/ a2	g	Ql	CA1	a1	th1 (Q1^2 Cos(Th	1) / al g	(a2 + a1) ,	/ 2		
an America fair a	Q3	CA3	a3	th3	Q3^2 Cos(Th3)	/ a3	g	Q4	CA4	a4	th4	Q4^2 Cos(Th	14) / a4 g		Hj		
1.00 A 40	(cfs)	(Acres)	(sq ft)	(deg)	(feet)			(cfs)	(Acres)	(sq ft)	(deg)	(feet)		(sq ft)	(feet)		
DI1	3.85	1.42	0.96												0.00		
DI2	8.43	3.34	0.57		0.00			3.57	1.42	0.96	0.0	0.41		0.76			
															0.00		

and the second se												
Mean Annua	l Precipit	ation = 23.0	0 inches		09	1093	Project:Lerob LLC					
Free Board	Requireme	nt = 1.75 fe	et		trac	t 8057	Design :Jared Frey					
File = $G: \setminus C$	Job2009\09	1093\Hydro\H	Pond-Sys					Date: 08-27-2010 Time: 08:28:42am				
TLW_Hydr		Hydr	ology				Page 3 of 6 version 2.01f					
Point DI1	Rad. 0.0	B/Dia 18.00	Vel. 4.0	Hb 0.00	Ht 0.10	Point DI2	Rad. 0.0	B/Dia 18.00	Vel. 14.9	Hb 0.00	Ht 0.00	

Storm Frequency 10 & 15 years Bend & Entry Loss Calculations Alameda County Method

Arrent (June					Alameda Co	ounty Method					
lean Annu	al Precipit	ation = 23.0	00 inches		09	91093			Project:Le	rob LLC	
Free Boar	d Requireme	ent = 1.75 fe	eet		trac	t 8057			Design :Ja	red Frey	
File = G:	\Job2009\09	1093\Hydro\H	Pond-Sys						Date: 08-2	7-2010 Time:	08:28:42am
CLW_Hydr		Hydı	cology				Hydraulics	5	Page 4 o	f 6 ver	rsion 2.01f
Point DI1	a-in 0.00	a-out 0.00	Vel. 0.0	He 0.00	Hc 0.00	Point DI2	a-in 0.75	a-out 0.75	Vel. 14.9	He 0.00	HC 0.00

Storm Frequency 10 & 15 years Expansion & Contraction Loss Calculations

	Storm Frequen	10 & 1 w	5 years	
Orifice Loss	Calculations	@ Sub	to Sup	er Transitions

Mean Annual	Precipitation = 23.0	0 inches	09	91093			Project:L	erob LLC		
Free Board	Requirement = 1.75 fe	et	trac	t 8057			Design :J	ared Frey		
File = $G: \setminus J$	Job2009\091093\Hydro\P	ond-Sys					Date: 08-	27-2010 Tim	e: 08:28:42am	
TLW_Hydr	Hydr	ology			Hydraulics	3	Page 5	of 6 v	ersion 2.01f	
Point DI1	d-in d-out Does Not		Н0 0.00	Point DI2	d-in 1.50	d-out 1.12	V-in 2.2	V-out 14.9	HC 0.45	

	Storm	Freque	ncy 10	&	15	years
Open	& Cl	osed	Sys	te	em	Summary

A constraints						Alamed	la County Me	thod						
Mean A	nnual Pre	cipitation	n = 23.00	inches			091093			Projec	t:Lerob	LLC		
Free B	loard Requi	irement =	1.75 fee	t			tract 8057			Design	:Jareć	l Frey		
File =	G:\Job20	09\091093	\Hydro\Po	nd-Sys						Date:	08-27-2	2010 Time	∋: 08:28:	42am
TLW_Hy	dr		Hydro	logy				Hydrau	lics	Page	6 of	6 ve	ersion 2.	01f
Pt	Area	0	Vel	F.L.	Dn	Dc	HGL	EGL	MTC	Plan TC	Flow	Net.		
DI1						0.75	672.90	673.15	674.65	677.00	EB	DI2		
DI2		8.43	14.86	670.60	1.12	1.12	672.17	675.60	673.92	678.40	SS*	OUT1		

RUGGERI-JENSEN 4690 Chabot Dr., Suite 200 Pleasanton California 94588 (925)-227-9100

•

Storm Frequency 10 & 15 years Open & Closed System Calculations Alameda County Method

	Alameda County Method Project:Lerob LLC Project:Lerob LLC																				
Mea	n Annua	l Prec	ipita	ation = 2	23.00 ind	ches				091093		· · ·				Project	t:Lerob	LLC			
Fre	e Board	Requi	remen	nt = 1.7	5 feet					tract 8057						Design	:Jared	Frey			
Fil	e = G:\.	Job200	9\09:	1093\Hyd:	ro\Pond2											Date:	08-27-20	10 Time	: 08:3	5:01an	n .
TLØ	_Hydr			1	Hydrology	Y						Hydrau	lics			Page	1 of 6	ve	rsion	2.01f	
Pt.	Area	dA	"C	" dCA	Sum	Sum	Time	Inten.	Q	#/=Dia/	Sf	Length	Vel.	Sect	Frict	Minor	HGL	MTC	Plan	Flow	
#	Descr.	base	"C"	G.Slope	А	dCA	of	"n"	CiA	ss Width	Sp	Dn		Time	Loss	Loss		HGL+	T.C.	Cond.	
	()	Acres)			(Acres)	(Acres)	Conc.		(cfs) (in./ft.))	(ft.)	(fps)	(min)	(ft.)	(ft.)	(ft.)	F.B.	F.L.	to Pt.	
DI3		0.59	0.6	0.35	0.59	0.35	5.0	3.18								0.42	640.62	642.37	645.	00 EB*	ŕ
			0.5	0 1.00				0.014	1.12	1= 18.0	0.000	1 102	0.6	2.7	0.01				640.	00	
											0.098	0 0.20	8.2	0.2						DI4	
DI 4		0.05	0.8	7 0.04	0.64	0.40	5.2	3.12								0.43	630.64	632.39	635.	00 PM*	ŕ
			0.9	0 1.00				0.014	1.23	1= 18.0	0.000	2 40	0.7	1.0	0.01				630.	00	
											0.100	0 0.21	8.5	0.1						OUT2	
												Begi	nning	Water	Surf	ace =	623.25				

Storm Frequency 10 & 15 years Junction Loss Calculations Alameda County Method

					r	inalicua coun	cy neciloc	*						- 1
Mean A	Annual A	Precipita	tion = 2	3.00 inches		0910	93			Pro	oject:Ler	ob LLC		1000 March 1000
Free 1	Board Re	equiremen	t ≈ 1.75	feet		tract	8057			De	sign :Jar	ed Frey		
File :	= G:\Job	2009\091	093\Hydr	o\Pond2						Dat	te: 08-27	-2010 Time: 0	8:35:01am	
TLW_H	ydr		н	ydrology				Hydraul	ics	Pag	ge 2 of	6 versi	on 2.01f	to make a market should be
Point	Q2	CA2	a2	Q2^2 Cos	(0) / a2 g	Ql	CA1	al	th1	Q1^2 Cos(Th	1) / al g	(a2 + a1)	/ 2	
	Q3	CA3	a3	th3 Q3^2 Cos	(Th3) / a3 g	Q4	CA4	a4	th4	Q4^2 Cos(Th	1) / a4 g		Нj	
4	(cfs)	(Acres)	(sq ft)	(deg) (feet)		(cfs)	(Acres)	(sq ft)	(deg)	(feet)		(sg ft)	(feet)	
DI3	1.12	0.35	0.14		·								0.00	
DI4	1.23	0.40	0.15	0.33		1.10	0.35	0.14	0.0	0.27		0.14		
and the second second													0.43	

5					LCT TO	DD Care		110				
							C					
Mean Annua	l Precipit	ation = 23.0	00 inches		09	91093			Project:Le	rob LLC		, including the second
Free Board	Requireme	nt = 1.75 fe	eet		trac	et 8057			Design :Ja	red Frey		
File = G:\	Job2009\09	1093\Hydro\J	Pond2						Date: 08-2	7-2010 Time:	08:35:01am	
TLW_Hydr		Hydi	rology				Hydraulic	5	Page 3 o	f 6 ver	sion 2.01f	- mark on summary
Point DI3	Rad. 0.0	B/Dia 18.00	Vel. 8.2	Hb 0.00	Ht 0.42	Point DI4	Rad. 0.0	B/Dia 18.00	Vel. 8.5	Hb 0.00	Ht 0.00	

RUGGERI-JENSEN 4690 Chabot Dr., Suite 200 Pleasanton California 94588 (925)-227-9100

Storm Frequency 10 & 15 years Bend & Entry Loss Calculations

and the second se					Alameda Co	ounty Method						
Mean Annual	Precipita	ation = 23.0	0 inches		09	1093			Project:Le	rob LLC		
Free Board	Requirement	nt = 1.75 fe	et		trac	t 8057			Design :Ja	red Frey		
File = G:\C	Job2009\09	1093\Hydro\F	ond2						Date: 08-2	7-2010 Time:	08:35:01am)
TLW_Hydr		Hydr	cology				Hydraulics	3	Page 4 o	f 6 ver	sion 2.01f	
Point DI3	a-in 0.00	a-out 0.00	Vel. 0.0	He 0.00	HC 0.00	Point DI4	a-in 0.38	a-out 0.38	Vel. 8.5	He 0.11	Hc 0.08	

Storm Frequency 10 & 15 years Expansion & Contraction Loss Calculations Alamada County Mothod

Storm Frequency 10 & 15 years Orifice Loss Calculations @ Sub to Super Transitions

	Alameda County Method	· · ·
Mean Annual Precipitation = 23.00 inches	091093	Project:Lerob LLC
Free Board Requirement = 1.75 feet	tract 8057	Design :Jared Frey
File = G:\Job2009\091093\Hydro\Pond2		Date: 08-27-2010 Time: 08:35:01am
TLW_Hydr Hydrology	Hydraulics	Page 5 of 6 version 2.01f
Point d-in d-out V-In V- DI3 Does Not Apply	out Ho Point d-in d-out 0.00 DI4 Does Not	

RUGGERI-JENSEN 4690 Chabot Dr., Suite 200 Pleasanton California 94588 (925)-227-9100

.

			-		1						
· `}		Op	oen &	Close	ed Syste	em Summ	ary				
				Alamed	a County Me	thod					
Mean Annual Precipit	cation = 23.00	inches			091093			Projec	t:Lerob	o LLC	
Free Board Requireme	ent = 1.75 fee	t			tract 8057			Desig	ı :Jared	l Frey	
File = G:\Job2009\09	91093\Hydro\Po	ond2						Date:	08-27-2	2010 Time:	08:35:01am
FLW_Hydr						Hydrau	lics	Page	6 of	6 vers	ion 2.01f
Pt Area Q	Vel	F.L.	Dn	Dc	HGL	EGL	MTC	Plan TC	Flow	Net.	
DI3 1	.12 8.20	640.00	0.20	0.39	640.62	641.66	642.37	645.00		DI4	
DI4 1	.23 8.49	630.00	0.21	0.42	630.64	631.76	632.39	635.00	PM*	OUT2	

Storm Frequency 10 & 15 years

Storm Frequency 10 & 15 years Open & Closed System Calculations Alameda County Method

								A	lamed	a County Me	ethod										
Mean	n Annual	Prec	ipita	ation = 2	23.00 ir	nches				091093						Projec	t:Lero	b LLC			
Fre	e Board	Requi	remer	nt = 1.7	5 feet				t	tract 8057						Design	:Jare	d Frey			
File	e = G:\J	ob200	9\091	L093\Hyd:	ro\Fairv	view										Date:	08-27-	2010 Time	: 08:35	:41am	
TLW	Hydr			1	Hydrolog	ау						Hydrau	lics			Page	1 of	6 ve	rsion 2	.01f	
Pt.	Area	dA	"C'	dCA	Sum	Sum	Time	Inten.	Q	#/=Dia/	sf	Lengt	ı Vel.	Sect	Frict	: Minor	HGL	MTC	Plan	Flow	
#	Descr.	base	"C"	G.Slope	A	dCA	of	"n"	CiA	SS Width	Sp	Dn		Time	Loss	Loss		HGL+	т.с. (Cond.	
-	(A	cres)			(Acres)	(Acres)	Conc		(cfs)) (in./ft.)		(ft.)	(fps)	(min)	(ft.)	(ft.)	(ft.)	F.B.	F.L. to	o Pt.	
DIS		1.50	0.57	7 0.85	1.50	0.85	10.0	2.29								0.00	615.3	7 617.12	620.0	0 BW	
5			0.50	1.00				0.014	1.95	1= 12.0	0.003	35 30	2.5	0.2	0.10)			615.0	0	
											0.017	70 Does	not	apply						DI6	
DI6		1.05	0.57	7 0.60	2.55	1.45	10.2	2.26								0.00	615.2	7 617.02	620.0	0 PM*	
			0.50	1.00				0.014	3.27	1= 12.0	0.009	98 125	4.2	0.5	1.22	:			614.50	0	
- Inclusion											0.196	50 0.77	15.0	0.1						DI7	
DI7		0.30	0.57	7 0.17	2.85	1.62	10.3	2.25								0.00	590.3	3 592.08	595.00	0 BW	
			0.50	1.00				0.014	3.64	1= 18.0	0.001	4 74	2.1	0.6	0.10	1			590.00	0	
											0.006	8 Does	not	apply						MH8	
MH8		0.00	0.56	5 0.00	2.85	1.62	10.9	2.19									590.2	3 591.98			
. ?			0.50	1.00				0.014	3.64	1= 18.0	0.001	.4 65	2.1	0.5	0.09)			589.50	0	
3											0.146	51 0.73	13.4	0.1						MH9	
MH 9		0.00			2.85	1.62	11.0	2.18									580.99	5 582.70			
A V June			0.50	0 1.00				0.014	3.64					0.5	0.09)			580.00		
											0.200	0 0.29	15.0	0.1						DI10	
DI1	0	0.24			3.09	1.79	11.1										567.83	3 569.58			
			0.70	1.00				0.014	3.88	1= 18.0					0.20				567.00		
											0.152	0 0.32	13.8	0.2						DI11	
DII	1	0.60			3.69	2.13	11.3	2.15			0.000						547.90	0 549.65	,		
			0.50	0 1.00				0.014	4.58	1= 18.0				0.6	0.20				547.00		
											0.005	0 Does								EX01	
												Begi	nning	Water	Surf	ace =	547.70	5			

							_							
					π		m Frequency							
					Jun		1 Loss (ns				
						A	lameda Coun	ty Method	1					
lean I	Annual	Precipita	ation = 2	3.00	inches		0910	93			Pro	ject:Lero	b LLC	
Free I	Board R	equiremen	nt = 1.75	feet			tract	8057			Des	ign :Jare	d Frey	
ile =	= G:\Jo	b2009\091	L093\Hydr	o\Fai	rview .						Dat	e: 08-27-	2010 Time: 0	B:35:41am
LW_H	ydr		H	lydrol	ogy				Hydraul	ics	Pag	e 2 of	6 versi	on 2.01f
Point	Q2	CA2	a2		Q2^2 Cos(0)	/ a2 g	Q1	CA1	al	th1	Q1^2 Cos(Th1)/a1g	(a2 + a1)	/ 2
and the second	Q3	CA3	a3	th3	Q3^2 Cos(Th3)	/ a3 g	Q4	CA4	a4	th4	Q4^2 Cos(Th4)/a4g		нј
.)	(cfs)	(Acres)	(sq ft)	(deg) (feet)		(cfs)	(Acres)	(sq ft)	(deg)	(feet)		(sq ft)	(feet)
15	1.95	0.85	0.79											
(Annalounder)														0.00
16	3.27	1.45	0.22		0.00		1.93	0.85	0.79	0.0	0.15		0.50	
-														0.00
1 7	3.64	1.62	1.77		0.23		3.26	1.45	0.22	0.0	1.51		0.99	
														0.00
MH8	3.64	1.62	0.27		0.00		3.64	1.62	1.77	0.0	0.23		1.02	
														0.00
MH9	3.64	1.62	0.24		1.69		3.64	1.62	0.27	0.0	1.52		0.26	
e dage anna 1														0.66
DI10	3.88	1.79	0.28		1,67		3.51	1.62	0.24	0.0	1.57		0.26	
3														0.38
0111	4.58	2.13	1.77		0.37		3.85	1.79	0.28	0.0	1.64		1.02	
	1.00	6.13	±•//		0.37		1.01	4.79	0.20	0.0	1.01		1.02	0.00

0.00

			Be	end & E	ntry Lo	ss Calc	ulatic	ns				
					Alameda Co	ounty Method						e.
ean Annual Precipitation = 23.00 inches					09	1093			Project:Le	rob LLC		
Free Board Requirement = 1.75 feet					trac	t 8057			Design :Ja	red Frey		
<pre>ile = G:\Job2009\091093\Hydro\Fairview</pre>									Date: 08-2	7-2010 Time:	: 08:35:41am	
LW_Hydr		Hydi	rology				Hydraulic	5	Page 3 o	f 6 vei	sion 2.01f	
Point)I5 DI7 MH9)I11	Rad. 0.0 0.0 0.0 0.0	B/Dia 12.00 18.00 18.00 18.00	Vel. 2.5 2.1 15.0 2.6	Hb 0.00 0.00 0.00 0.00	Ht 0.04 0.00 0.00 0.00	Point DI6 MH8 DI10	Rad. 0.0 0.0 0.0	B/Dia 12.00 18.00 18.00	Vel. 15.0 13.4 13.8	Hb 0.00 0.00 0.00	Ht 0.00 0.00 0.00	

Storm Frequency 10 & 15 years

					Alameda Co	ounty Method	l					1
Mean Annual Precipitation = 23.00 inches 091093						91093			Project:Le	rob LLC		
Free Board Requirement = 1.75 feet					trac	st 8057			Design :Ja	red Frey		
File ≖ G:\	Job2009\09	1093\Hydro\1	Fairview						Date: 08-2	7-2010 Time	: 08:35:41an	n
TLW_Hydr		Hyd	rology				Hydraulics		Page 4 o	f 6 vei	rsion 2.01f	المراحية والمحادث
Point	a-in	a-out	Vel.	Не	HC	Point	a-in	a-out	Vel.	Не	Hc	
DI5	0.00	0.00	0.0	0.00	0.00	DIG	0.47	0.89	15.0	0.00	0.00	
DI7	1.33	0.91	15.0	0.01	0.01	MH8	0.52	1.33	13.4	0.00	0.00	
MH 9	0.49	0.49	15.0	0.31	0.28	DI10	0.53	0.53	13.8	0.27	0.24	
DI11	1.33	1.05	13.8	0.01	0.01							

Storm Frequency 10 & 15 years Expansion & Contraction Loss Calculations

)					-					
Annual			Alameda C	ounty Method	L -					1
Mean Annual Precipitation = 23.00 inches			091093			Project:Lerob LLC				
Free Board Requirement = 1.75 feet			tra	tract 8057			Design :Jared Frey			
File = G	3:\Job2009\091093\Hydro\Fa	airview					Date: 08-	-27-2010 Tim	ne: 08:35:41a	m
TLW_Hydr	Hydro	ology			Hydraulics	3	Page 5	of 6 1	version 2.01f	
Point	d-in d-out	V-In V-out	Но	Point	d-in	d-out	V-in	V-out	Hc	
DI5	Does Not	Apply	0.00	DIG	1.00	0.77	2.5	15.0	0.19	
DI7	Does Not	Apply	0.00	MH8	1.50	0.73	2.1	13.4	0.72	
MH9	Does Not	Apply	0.00	DI10	D	oes Not	: Apply	7	0.00	
DI11	Does Not	Apply	0.00							

Storm Frequency 10 & 15 years Orifice Loss Calculations @ Sub to Super Transitions

		Storm Frequency 10 Closed Sys Alameda County 1	tem Summary			
Mean Annual Precipitation = 23.00	inches	091093		Project:Lerob LLC		
Free Board Requirement = 1.75 feet	t	tract 805	7	Design :Jared Frey		
File = G:\Job2009\091093\Hydro\Fairview Date: 08-27-2010 Time						
TLW_Hydr Hydrol	logy		Hydraulics	Page 6 of 6 version 2.01f		
Pt Area Q Vel DI5 1.95 2.48 DI6 3.27 14.97 DI7 3.64 2.06 MH8 3.64 13.41 MH9 3.64 14.97 DI10 3.88 13.85 DI11 4.58 2.59	F.L. Dn 615.00 N/A 614.50 0.77 590.00 N/A 589.50 0.73 580.00 0.29 567.00 0.32 547.00 N/A	Dc HGL N/A 615.37 0.77 615.27 N/A 590.33 0.73 590.23 0.73 580.95 0.75 567.83 N/A 547.90	7 618.75 617.02 8 590.40 592.08 3 593.02 591.98 5 584.43 582.70 8 570.81 569.58	620.00 PM* DI7 595.00 BW MH8 595.00 EB* MH9 585.00 PM* DI10 572.00 EB* DI11		

Detention System Calculations

Bay Area Hydrology Model PROJECT REPORT

Project Name: 091093 Site Address: FAIRVIEW City : ALAMEDA COUNTY Report Date : 8/26/2010 Gage : NRWARK Data Start : 1959/10/01 Data End : 2003/09/30 Precip Scale: 1.62 BAHM Version:

PREDEVELOPED LAND USE

Name : Basin 1 Bypass: No

GroundWater: No

Pervious		Acres
C D,Gras		10.5

Impervious Land Use Acres

Element Flows To: Surface Interflow

Name : Basin 1 Bypass: No

GroundWater: No

Pervious Land UseAcresC D,Grass,Ste(10-20)2.9

Impervious Land Use
Roads,Flat(0-5%)Acres
2

Element Flows To:GroundwaterSurfaceInterflowGroundwaterTrapezoidal Pond 1,Trapezoidal Pond 1,

Groundwater

Name : Trapezoidal Pond 1 Bottom Length: 80ft.

```
Bottom Width: 19ft.

Depth : 1.75ft.

Volume at riser head : 0.0725ft.

Infiltration On

Infiltration rate : 0.01

Infiltration saftey factor : 0

Side slope 1: 3.5 To 1

Side slope 2: 3.5 To 1

Side slope 3: 3.5 To 1

Side slope 4: 3.5 To 1

Discharge Structure

Riser Height: 1.5 ft.

Riser Diameter: 12 in.

Orifice 1 Diameter: 5.4 in. Elevation: 0 ft.

Orifice 1 Diameter: 7 in. Elevation: 0.5 ft.

Orifice 1 Diameter: 8.5 in. Elevation: 1.15 ft.

Element Flows To:
```

```
Outlet 1 Outlet 2
```

Pond Hydraulic Table

	FOIL			
Stage(ft)		Volume(acr-ft)		
621.5	0.035	0.000	0.000	0.000
621.5	0.035	0.001	0.107	0.000
621.5	0.036	0.001	0.151	0.000
621.6	0.036	0.002	0.185	0.000
621.6	0.036	0.003	0.214	0.000
621.6	0.036	0.003	0.239	0.000
621.6	0.037	0.004	0.262	0.000
621.6	0.037	0.005	0.283	0.000
621.7	0.037	0.006	0.302	0.000
621.7	0.038	0.006	0.320	0.000
621.7	0.038	0.007	0.338	0.000
621.7	0.038	0.008	0.354	0.000
621.7	0.039	0.009	0.370	0.000
621.8	0.039	0.009	0.385	0.000
621.8	0.039	0.010	0.400	0.000
621.8	0.040	0.011	0.414	0.000
621.8	0.040	0.012	0.427	0.000
621.8	0.040	0.012	0.440	0.000
621.9	0.041	0.013	0.453	0.000
621.9	0.041	0.014	0.466	0.000
621.9	0.041	0.015	0.478	0.000
621.9	0.042	0.016	0.489	0.000
621.9	0.042	0.016	0.501	0.000
621.9	0.042	0.017	0.512	0.000
622.0	0.043	0.018	0.523	0.000
622.0	0.043	0.019	0.534	0.000
622.0	0.043	0.020	0.640	0.000
622.0	0.044	0.021	0.758	0.000
622.0	0.044	0.021	0.836	0.000
622.1	0.044	0.022	0.900	0.000
622.1	0.045	0.023	0.956	0.000
622.1	0.045	0.024	1.007	0.000

622.1	0.045	0.025	1.054	0.000
622.1	0.046	0.026	1.098	0.000
622.2	0.046	0.027	1.139	0.000
622.2	0.046	0.028	1.179	0.000
622.2	0.047	0.028	1.216	0.000
				0.000
622.2	0.047	0.029	1.252	
622.2	0.047	0.030	1.287	0.000
622.3	0.048	0.031	1.321	0.000
622.3	0.048	0.032	1.354	0.000
622.3	0.048	0.033	1.385	0.000
622.3	0.049	0.034	1.416	0.000
622.3	0.049	0.035	1.446	0.000
622.4	0.049	0.036	1.476	0.000
622.4	0.050	0.037	1.504	0.000
622.4	0.050	0.038	1.533	0.000
622.4	0.050	0.039	1.560	0.000
622.4	0.051	0.040	1.587	0.000
622.5	0.051	0.041	1.614	0.000
622.5	0.051	0.042	1.640	0.000
622.5	0.052	0.043	1.665	0.000
622.5	0.052	0.044	1.690	0.000
622.5	0.052	0.045	1.715	0.000
622.6	0.053	0.046	1.739	0.000
622.6	0.053	0.047	1.763	0.000
622.6	0.054	0.048	1.787	0.000
622.6	0.054	0.049	1.810	0.000
622.6	0.054	0.050	1.833	0.000
622.6	0.055	0.051	1.856	0.000
622.7	0.055	0.052	2.123	0.000
622.7	0.055	0.053	2.261	0.000
622.7	0.056	0.054	2.369	0.000
622.7	0.056	0.055	2.463	0.000
622.7	0.056	0.056	2.548	0.000
622.8	0.057	0.058	2.626	0.000
622.8	0.057	0.059	2.699	0.000
622.8	0.058	0.060	2.769	0.000
622.8	0.058	0.061	2.835	0.000
622.8	0.058	0.062	2.899	0.000
622.9	0.059	0.063	2.960	0.000
622.9	0.059	0.064	3.019	0.000
622.9	0.059	0.065	3.076	0.000
622.9	0.060	0.067	3.131	0.000
622.9	0,060	0.068	3.186	0.000
623.0	0.060	0.069	3.238	0.000
623.0	0.061	0.070	3.290	0.000
623.0	0.061	0.071	3.340	0.000
623.0	0.062	0.073	3.411	0.000
623.0	0.062	0.074	3.505	0.000
623.1	0.062	0.075	3.613	0.000
623.1	0.063	0.076	3.733	0.000
623.1	0.063	0.077	3.861	0.000
623.1	0.063	0.079	3.998	0.000
623.1	0.064	0.080	4.142	0.000
623.2	0.064	0.081	4.293	0.000
623.2	0.065	0.082	4.451	0.000
623.2	0.065	0.084	4.615	0.000
623.2	0.065	0.085	4.784	0.000
022.2	0.000	0.005		

.

.

623.2 623.3 623.3	0.066 0.066 0.067	0.086 0.087 0.089	4.959 5.139 5.324	0.000 0.000 0.000				
Name Bypass:								
GroundWat	GroundWater: No							
or Construction of the Con	Pervious Land UseAcresC D,Grass,Ste(10-20)5.2							
	us Land Use sep(10-20%)	Act	res 0.4					
Element H Surface	flows To:	Interflow	×	Groundwater				
MITIGATED LAND USE								
	ANALYSIS RESULTS							
Flow Freq	quency Retur	n Periods i	for Predeve	loped. POC #1				
Return Pe	riod	71 ()					
ACCULIE 20	STICU	Flow(cfs)						
2 year	31 104	Flow(CIS) 5.62201	Press Contract of					
2 year 5 year		5.62201 8.70082	14 2					
2 year 5 year 10 year		5.62203 8.70082 11.2347	14 2 711					
2 year 5 year		5.62201 8.70082	14 2 711					
2 year 5 year 10 year 25 year		5.6220 8.70082 11.2347 18.7120	14 2 711 078	ed. POC #1				
2 year 5 year 10 year 25 year Flow Free	quency Retur	5.6220 8.70082 11.2347 18.7120	14 2 711 078 Eor Mitiga t	ed. POC #1				
2 year 5 year 10 year 25 year Flow Free Return Pe		5.6220 8.70082 11.2347 18.7120	14 2 711 078 for Mitigat	ed. POC #1				
2 year 5 year 10 year 25 year Flow Free	quency Retur	5.6220 8.70082 11.2347 18.7120 m Periods f Flow(cfs)	14 2 711 078 for Mitigat 26	ed. POC #1				
2 year 5 year 10 year 25 year Flow Free Return Pe 2 year	quency Retur	5.6220 8.70082 11.2347 18.7120 m Periods f Flow(cfs) 5.02292	14 2 711 078 for Mitigat 26 3	ed. POC #1				
2 year 5 year 10 year 25 year Flow Free <u>Return Pe</u> 2 year 5 year	quency Retur	5.62203 8.70082 11.2347 18.7120 m Periods f Flow(cfs) 5.02292 8.02103	14 2 711 078 Eor Mitigat 26 3 128	ed. POC #1				
2 year 5 year 10 year 25 year Flow Free Return Pe 2 year 5 year 10 year 25 year Yearly Pe Year	quency Retur ariod eaks for Pre Predeve	5.6220 8.70082 11.2347 18.7120 m Periods Flow(cfs) 5.02292 8.02103 10.3347 16.4823 edeveloped a	14 2 711 078 for Mitigat 26 3 128 356 and Mitigat itigated					
2 year 5 year 10 year 25 year Flow Free Return Pe 2 year 5 year 10 year 25 year Yearly Pe Year 1961	quency Retur ariod eaks for Pre Predeve 7.498	5.6220 8.70082 11.2347 18.7120 m Periods f <u>Flow(cfs)</u> 5.02292 8.02103 10.3342 16.4823 edeveloped a sloped Mi	14 2 711 078 for Mitigat 26 3 128 356 and Mitigat itigated .143					
2 year 5 year 10 year 25 year Flow Free Return Pe 2 year 5 year 10 year 25 year Yearly Pe Year 1961 1962	quency Retur ariod eaks for Pre Predeve 7.498 7.856	5.6220 8.70082 11.2347 18.7120 m Periods f <u>Flow(cfs)</u> 5.02292 8.02103 10.3342 16.4823 edeveloped a eloped Mi	14 2 711 078 for Mitigat 26 3 128 356 and Mitigat itigated .143 .165					
2 year 5 year 10 year 25 year Flow Free Return Pe 2 year 5 year 10 year 25 year Yearly Pe Year 1961 1962 1963	quency Retur ariod eaks for Pre Predeve 7.498 7.856 10.346	5.6220 8.70082 11.2347 18.7120 m Periods f <u>Flow(cfs)</u> 5.02292 8.02103 10.3347 16.4823 developed a cloped Mi	14 2 711 078 for Mitigat 26 3 128 356 and Mitigat itigated .143 .165 .607					
2 year 5 year 10 year 25 year Flow Free Return Pe 2 year 5 year 10 year 25 year Yearly Pe Year 1961 1962 1963 1964	quency Retur ariod eaks for Pre Predeve 7.498 7.856 10.346 15.389	5.6220 8.70082 11.2347 18.7120 m Periods f Flow(cfs) 5.02292 8.02103 10.3347 16.4823 developed a 6 10ped M	14 2 711 078 for Mitigat 2 6 3 128 356 and Mitigat itigated .143 .165 .607 5.207					
2 year 5 year 10 year 25 year Flow Free 2 year 5 year 10 year 25 year Yearly Pe Yearly Pe Year 1961 1962 1963 1964 1965	quency Returneriod eaks for Pre Predeve 7.498 7.856 10.346 15.389 8.610	5.6220 8.70082 11.2347 18.7120 n Periods Flow(cfs) 5.02292 8.02103 10.3347 16.4823 edeveloped aloped Mi 6 7 9 19	14 2 711 078 for Mitigat 26 3 128 356 and Mitigat itigated .143 .165 .607 5.207 .021					
2 year 5 year 10 year 25 year Flow Free 2 year 5 year 10 year 25 year Yearly Pe Yearly Pe Year 1961 1962 1963 1964 1965 1966	quency Returneriod eaks for Pre Predeve 7.498 7.856 10.346 15.389 8.610 3.664	5.6220 8.70082 11.2347 18.7120 n Periods Flow(cfs) 5.02292 8.02103 10.3347 16.4823 edeveloped a sloped Mai 6 7 9 15 8 2	14 2 711 078 for Mitigat 26 3 128 356 and Mitigat itigated .143 .165 .607 5.207 .021 .924					
2 year 5 year 10 year 25 year Flow Free 2 year 5 year 10 year 25 year Yearly Pe Year 1961 1962 1963 1964 1965 1966 1967	quency Returneriod eaks for Pre Predeve 7.498 7.856 10.346 15.389 8.610 3.664 6.975	5.6220 8.70082 11.2347 18.7120 m Periods Flow(cfs) 5.02292 8.02103 10.3347 16.4823 edeveloped a sloped Mi 6 7 9 9 15 8 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	14 2 711 078 for Mitigat 26 3 128 356 and Mitigat itigated .143 .165 .607 5.207 .021 .924 .539					
2 year 5 year 10 year 25 year Flow Free Return Pe 2 year 5 year 10 year 25 year Yearly Pe Year 1961 1962 1963 1964 1965 1966 1967 1968	quency Returner ariod eaks for Pre Predeve 7.498 7.856 10.346 15.389 8.610 3.664 6.975 18.643	5.6220 8.70082 11.2347 18.7120 m Periods Flow(cfs) 5.02292 8.02103 10.3347 16.4823 edeveloped aloped M 6 7 9 9 19 8 2 5 10 10 10 10 10 10 10 10 10 10 10 10 10	14 2 711 078 for Mitigat 26 3 128 356 and Mitigat itigated .143 .165 .607 5.207 .021 .924 .539 5.281					
2 year 5 year 10 year 25 year Flow Free 2 year 5 year 10 year 25 year Yearly Pe Year 1961 1962 1963 1964 1965 1966 1967	quency Returneriod eaks for Pre Predeve 7.498 7.856 10.346 15.389 8.610 3.664 6.975	5.6220 8.70082 11.2347 18.7120 m Periods f <u>Flow(cfs)</u> 5.02292 8.02103 10.3347 16.4823 edeveloped a sloped Mi 6 7 9 9 15 8 2 5 10 10 10 10 10 10 10 10 10 10 10 10 10	14 2 711 078 for Mitigat 26 3 128 356 and Mitigat itigated .143 .165 .607 5.207 .021 .924 .539					

1971	3.904	3.795
1972	6.599	6.722
1973	2.231	1.596
1974	10.823	10.843
1975	5.747	5.494
1976	10.184	8.654
1977	0.915	0.649
1978	1.823	1.312
1979	6.752	6.787
1980	7.458	6.081
1981	5.552	4.518
1982	2.935	2.448
1983	11.750	9.927
1984	5.858	5.708
1985	6.900	5.738
1986	3.930	3.450
1987	4.391	3.574
1988	3.319	3.247
1989	4.326	3.801
1990	2.972	2.958
1991	3.173	2.402
1992	4.699	3.381
1993	8.701	7.200
1994	5.907	5.689
1995	2.659	2.425
1996	19.266	18.095
1997	4.321	3.494
1998	5.540	5.638
1999	6.441	6.262
2000	3.597	2.741
2001	3.718	3.738
2002	3.476	2.610
2003	3.056	2.709
2004	6.299	6.055

Ranked	Yearly Peaks for	Predeveloped and Mitigated. POC #1	
Rank	Predeveloped	Mitigated	
1	19.2663	18.0948	
2	18.6428	16.2808	
3	15.3889	15.2073	
4	11.7496	10.8431	
5	10.8228	9.9270	
6	10.3461	9.6073	
7	10.1843	9.2653	
8	8.9785	8.6545	
9	8.7008	8.0210	
10	8.6098	7.2004	
11	7.8556	7.1649	
12	7.4985	6.7865	
13	7.4581	6.7221	
14	6.9746	6.2616	
15	6.8996	6.1433	
16	6.7522	6.0811	
17	6.5987	6.0549	
18	6.4410	5.7385	
19	6.2986	5.7075	

20	5.9074	5.6891
21	5.8579	5.6377
22	5.7473	5.5390
23	5.6950	5.4944
24	5.5523	4.5720
25	5.5401	4.5183
26	4.6986	3.8009
27	4.3911	3.7948
28	4.3259	3.7377
29	4.3207	3.5741
30	3.9297	3.4939
31	3.9039	3.4496
32	3.7183	3.3807
33	3.6640	3.2474
34	3.5968	2.9585
35	3.4765	2.9242
36	3.3188	2.7407
37	3.1728	2.7094
38	3.0561	2.6096
39	2.9724	2.4480
40	2.9349	2.4253
41	2.6587	2.4023
42	2.2313	1.5965
43	1.8229	1.3117
44	0.9151	0.6488

POC #1 The Facility PASSED

The Facility PASSED.

Flow(CFS) Predev Dev Percentage Pass/Fail

LTOM (CED)	L'ECEA	Dea ter	cencage	, robolr
0.5622	2349	2591	110	Pass
0.6700	2066	2204	106	Pass
0.7778	1847	1862	100	Pass
0.8856	1632	1626	99	Pass
0.9934	1449	1413	97	Pass
1.1012	1284	1232	95	Pass
1.2090	1150	1087	94	Pass
1.3168	1029	987	95	Pass
1.4246	910	882	96	Pass
1.5324	809	781	96	Pass
1.6402	731	698	95	Pass
1.7480	656	627	95	Pass
1.8558	590	575	97	Pass
1.9636	542	514	94	Pass
2.0714	501	469	93	Pass
2.1792	471	418	88	Pass
2.2871	430	376	87	Pass
2.3949	395	336	85	Pass
2.5027	359	301	83	Pass
2.6105	321	263	81	Pass
2.7183	293	241	82	Pass
2.8261	259	216	83	Pass
2.9339	243	197	81	Pass
3.0417	227	187	82	Pass

3.1495	212	166	78	Pass
3.2573	198	156	78	Pass
3.3651	179	143	79	Pass
3.4729	163	132	80	Pass
3.5807	155	124	80	Pass
3.6885	142	114	80	Pass
3.7963	132	107	81	Pass
3.9041	126	95	75	Pass
4.0119	113	90	79	Pass
4.1197	106	86	81	Pass
4.2275	97	80	82	Pass
4.3353	92	76	82	Pass
4.4431	87	74	85	Pass
4.5509	84	68	80	Pass
4.6587	82	64	78	Pass
4.7665	75	59	78	Pass
4.8743	72	59	81	Pass
4.9821	65	55	84	Pass
5.0899	64	53	82	Pass
5.1977	60	48	80	Pass
5.3055	55	47	85	Pass
5.4133	52	45	86	Pass
5.5211	49	44	89	Pass
5.6289	47	43	91	Pass
5.7368	46	40	86	Pass
5.8446	43	38	88	Pass
5.9524	40	36	90	Pass
6.0602	38	34	89	Pass
6.1680	37	31	83	Pass
6.2758	36	26	72	Pass
6.3836	33	26	78	Pass
6.4914	30	26	86	Pass
6.5992	28	26	92	Pass
6.7070	27	23	85	Pass
6.8148	25	21	84	Pass
6.9226	24	21	87	Pass
7.0304	23	20	86	Pass
7.1382	22	20	90	Pass
7.2460	22	15	68	Pass
7.3538	22	15	68	Pass
7.4616	21	14	66	Pass
7.5694	20	14	70	Pass
7.6772	19	14	73	Pass
7.7850	18	14	77	Pass
7.8928	17	14	82	Pass
8.0006	17	14	82	Pass
8.1084	16	11	68	Pass
8.2162	16	11	68	Pass
8.3240	16	11	68	Pass
8.4318	16	11	68	Pass
8.5396	15	11	73	Pass
8.6474	13	11	84	Pass
8.7552	11	10	90	Pass
8.8630	11	9	81	Pass
8.9708	10	9	90	Pass
9.0786	9	9	100	Pass
9.1865	9	9	100	Pass

9.2943	9	8	88	Pass
9.4021	9	8	88	Pass
9.5099	9	8	88	Pass
9.6177	9	7	77	Pass
9.7255	8	7	87	Pass
9.8333	8	7	87	Pass
9.9411	8	6	75	Pass
10.0489	8	6	75	Pass
10.1567	8	6	75	Pass
10.2645	7	6	85	Pass
10.3723	6	6	100	Pass
10.4801	6	6	100	Pass
10.5879	6.	6	100	Pass
10.6957	. 6	6	100	Pass
10.8035	5	5	100	Pass
10.9113	4	4	100	Pass
11.0191	4	4	100	Pass
11.1269	4	4	100	Pass
11.2347	4	4	100	Pass

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc, Applied Marine Sciences Incorporated, the Alameda County Flood Control and Water Conservation District, EOA Incorporated, member agencies of the Alameda Countywide Clean Water Program, member agencies of the San Mateo Countywide Water Pollution Prevention Program, member agencies of the Santa Clara Valley Urban Runoff Pollution Prevention Program or any other LOU Participants or authorized representatives of LOU Participants be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc., Applied Marine Sciences Incorporated, the Alameda County Flood Control and Water Conservation District, EOA Incorporated or any member agencies of the LOU Participants or their authorized representatives have been advised of the possibility of such damages. Software Copyright [©] by Clear Creek Solutions, Inc. 2005-2007; All Rights Reserved.

APPENDIX H

TJKM Transportation Consultants,

Traffic Impact Study for the Residential Developments at Bassard Tract #7303 and Fairview LLC Tract 7921

ì

)))

)

h

Vision That Moves Your Community

Draft Report

Traffic Impact Study for the Residential Developments at Bassard Tract #7303 and Fairview LLC Tract #7921

In the County of Alameda

November 9, 2009

Pleasanton Fresno Sacramento Santa Rosa

Table of Contents

Introduction and Summary	I
Introduction	I
Summary	
Analysis Methodology	4
Level of Service Analysis Methodology	4
LOS Standards	4
Existing Conditions (Scenario 1)	5
Roadway Network	5
Intersection Geometrics and Traffic Control	5
Traffic Volumes	
Level of Service Analysis	7
Proposed Residential Developments at Bassard Tract #7303 and Fairview LLC Tra	ct
#7921	
Project Description	8
Modifications to Intersection Geometrics and Traffic Control	8
Trip Generation	
Trip Distribution and Trip Assignment	
Increase in Weekday Daily Traffic	9
Existing Conditions plus Proposed Development plus Other Development (Scenari	~
φ i i i i i i	
Existing Conditions plus Proposed Development plus Other Development (Scenari	
Other Development Description	.11
Other Development Description Trip Generation	.
Other Development Description Trip Generation Trip Distribution and Assignment for Other Development	. 2
Other Development Description Trip Generation Trip Distribution and Assignment for Other Development Trip Distribution and Assignment for All Development	. 2 2
Other Development Description Trip Generation Trip Distribution and Assignment for Other Development Trip Distribution and Assignment for All Development Level of Service Analysis	.11 11 11 12 12 15
Other Development Description Trip Generation Trip Distribution and Assignment for Other Development Trip Distribution and Assignment for All Development Level of Service Analysis Increase in Daily Traffic	. 2 2 5 5
Other Development Description Trip Generation Trip Distribution and Assignment for Other Development Trip Distribution and Assignment for All Development Level of Service Analysis Increase in Daily Traffic	. 2 2 5 5 . 6
Other Development Description Trip Generation Trip Distribution and Assignment for Other Development Trip Distribution and Assignment for All Development Level of Service Analysis Increase in Daily Traffic Existing Conditions (Scenario 1)	• 11 11 12 12 15 15 • 16 16
Other Development Description Trip Generation Trip Distribution and Assignment for Other Development Trip Distribution and Assignment for All Development Level of Service Analysis Increase in Daily Traffic	• 11 11 12 12 15 15 • 16 16
Other Development Description Trip Generation Trip Distribution and Assignment for Other Development Trip Distribution and Assignment for All Development Level of Service Analysis Increase in Daily Traffic Existing Conditions (Scenario 1)	. 11 11 12 12 15 15 16 16
Other Development Description Trip Generation Trip Distribution and Assignment for Other Development Trip Distribution and Assignment for All Development Level of Service Analysis Increase in Daily Traffic Conclusions Existing Conditions (Scenario 1) Existing Conditions plus Proposed Development plus Other Development (Scenario 2)	• 11 11 12 12 15 15 16 16 16 17
Other Development Description Trip Generation Trip Distribution and Assignment for Other Development Trip Distribution and Assignment for All Development Level of Service Analysis Increase in Daily Traffic Conclusions Existing Conditions (Scenario 1) Existing Conditions plus Proposed Development plus Other Development (Scenario 2) Study Participants and References	.11 11 12 12 15 15 16 16 16 17 17 17

List of Appendices

Appendix A – Level of Service Methodology Appendix B – Level of Service Methodology: Roundabout Intersection Supplement Appendix C – Existing Traffic Counts Appendix D – Level of Service Worksheets: Existing Conditions (Scenario 1) Appendix E – Level of Service Worksheets: Existing Conditions plus Proposed Development plus Other Development (Scenario 2)

)

Introduction and Summary

Introduction

This report presents the results of TJKM's traffic impact analysis for the proposed residential developments at Bassard Tract #7303 and Fairview LLC Tract #7921 in the Fairview area, near the City of Hayward, in the County of Alameda. Bassard Tract #7303 is located on the south side of 'D' Street, near Carlson Court, while Fairview LLC Tract #7921 is located on the northeast side of Fairview Avenue, near Levine Drive.

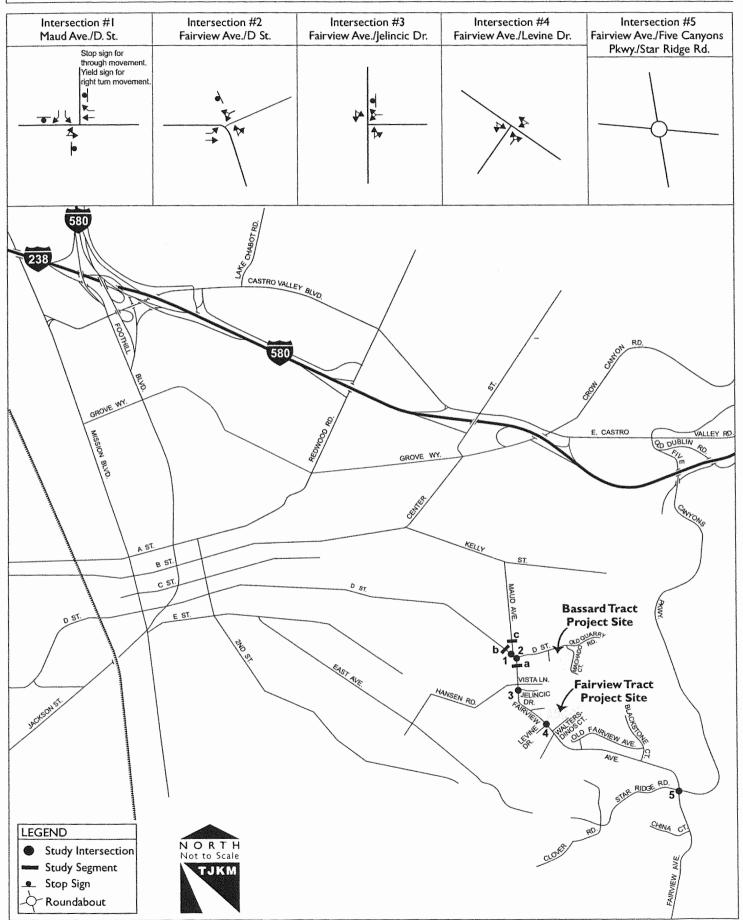
The developer of Bassard Tract #7303 is proposing to build approximately 16 single-family homes that would have access to 'D' Street by a proposed development driveway. The developer of Fairview LLC Tract #7921 is proposing to build approximately 13 single-family homes that would have access to Fairview Avenue at the existing intersection with Levine Drive. The development sites and their vicinities are shown in Figure 1.

The purpose of this traffic study is to evaluate the potential traffic impacts on the adjacent roadway network resulting from the proposed residential developments at Bassard Tract #7303 and Fairview LLC Tract #7921 and to determine potential improvement measures.

Traffic operations were evaluated at the following five study intersections that were selected by County staff:

- I. 'D' Street and Maud Avenue
- 2. Fairview Avenue and 'D' Street
- 3. Fairview Avenue and Jelincic Drive
- 4. Fairview Avenue and Levine Drive
- 5. Fairview Avenue and Five Canyons Parkway and Star Ridge Road

An intersection level of service (LOS) analysis was performed for the study intersections for the following two scenarios:


- 1. Existing Conditions (Scenario 1) This scenario evaluates the study intersections based on existing traffic counts and field surveys.
- Existing Conditions plus Proposed Development plus Other Development (Scenario 2) This scenario is similar to the Existing Conditions scenario, with the addition of traffic from the proposed residential developments at Bassard Tract #7303 and Fairview LLC Tract #7921. This scenario also includes traffic from potential other developments in the surrounding area.

In addition, increases in weekday daily traffic resulting with the proposed developments and potential other developments were analyzed for the following study roadway segments:

- 1. Fairview Avenue, south of 'D' Street
- 2. 'D' Street, west of Maud Avenue
- 3. Maud Avenue, north of 'D' Street

Alameda County - Bassard Tract #7303 and Fairview LLC Tract #7921 Traffic Study Vicinity Map and Intersection Lane Geometry and Traffic Control

Figure

14-132 - 10/22/09 - TR

)

0

0000

)

)

Existing Conditions (Scenario I)

Roadway Network

'D' Street is an east-west arterial that extends eastward from Winton Avenue, through the City of Hayward, and into the Fairview area of the County of Alameda. At the Bassard Tract #7303 project site, 'D' Street is a two-lane two-way street running through a residential neighborhood.

Fairview Avenue is a northwest-southeast collector street that extends from 'D' Street, through the Fairview area of the County of Alameda, until it reaches Hayward Boulevard in the northwest part of the City of Hayward. At the Fairview LLC Tract #7921 project site, Fairview Avenue is a two-lane two-way roadway striped to prohibit passing in both directions.

Maud Avenue is a two-way collector street that extends from Kelly Street to 'D' Street.

Intersection Geometrics and Traffic Control

The intersection of 'D' Street and Maud Avenue is an unsignalized intersection with three approaches. All of the intersection movements are stop controlled except for the westbound right-turn movement from 'D' Street, which is controlled by a yield sign. The westbound approach on 'D' Street and the southbound approach on Maud Avenue have two lanes entering the intersection, while the eastbound approach on 'D' Street has one lane entering the intersection.

The intersection of Fairview Avenue and 'D' Street is an unsignalized intersection with three approaches. The minor street approach, which is the westbound approach on 'D' Street, is stop controlled. A left-turn pocket and a continuing through lane are provided for eastbound traffic on 'D' Street, while one lane in each direction is designated on the other approaches.

The intersection of Fairview Avenue and Jelincic Drive is an unsignalized intersection with three approaches. The minor street approach, the westbound approach on Jelincic Drive, is stop controlled. Traffic on all approaches is designated to one lane in each direction.

The intersection of Fairview Avenue and Levine Drive is an unsignalized intersection with three approaches. The minor approach, the northbound approach on Levine Drive, yields to the major approaches. Traffic on all approaches is designated to one lane in each direction.

The intersection of Fairview Avenue, Five Canyons Parkway, and Star Ridge Road is a one-lane roundabout.

The lane geometry and traffic control is shown in Figure 1 for each study intersection.

Traffic Volumes

Existing traffic volume counts at the study intersections and along the study roadway segments were taken during September 2009. The turning movement volumes for the study intersections were taken during the typical a.m. peak period, between 7:00 a.m. and 9:00 a.m., and during the typical p.m. peak period, between 4:00 p.m. and 6:00 p.m., on Tuesday, September 15th. The traffic volumes for each study roadway segment were taken over a continuous 72-hour period, from 12:00 a.m. on a Tuesday through the end of the following Thursday, starting on either September 15th or September 22nd. The existing traffic volumes are included in Appendix C and summarized in Figure 2.

1

Level of Service Analysis

Table I presents a summary of the peak hour level of service analysis for each of the study intersections for the Existing Conditions (Scenario 1). Level of service worksheets are provided in Appendix D.

10		Carteral	A.M. Pe	ak Hour	P.M. Peak Hour		
ID	Intersection	Control	Delay	LOS	Delay	LOS	
1	'D' Street / Maud Avenue	All-Way Stop	8.7	А	9.3	А	
2	Fairview Avenue / 'D' Street	Minor Street Approach Stop	(1.5	В	9.9	А	
3	Fairview Avenue / Jelincic Drive	Minor Street Approach Stop	10.0	В	9.0	A	
4	Fairview Avenue / Levine Drive	Minor Approach Yields	10.3	В	10.1	Α	
5	Fairview Avenue / Five Canyons Parkway / Star Ridge Road	Roundabout	7.6	А	8.4	A	
Note:	Delay = Average Delay in se	conds per vehicle					

Delay = Average Delay in seconds per vehicle

LOS = Level of Service

The delay and LOS at the all-way stop controlled intersection are for the overall intersection performance. The delay and LOS at intersections with stop or yield control on the minor approach are for the worst-case minor approach.

The delay and LOS at the roundabout intersection are for the overall intersection performance.

For Existing Conditions (Scenario 1), all of the five study intersections operate at acceptable levels of service.

			Weekday Daily						
Project	Land Use (ITE Code)	Code) Size			In	Out	Total		
Bassard Tract #7303	Single-Family Detached Housing (210)	16 Units	9.57	50:50	77	77	154		
Fairview LLC Tract #7921	Single-Family Detached Housing (210)	13 Units	9.57	50:50	62	62	124		
Proposed	29 Units			139	139	278			

Table III: Weekday Daily Trip Generation for Proposed Development

Trip Distribution and Trip Assignment

Trip distribution determines the proportions of the total vehicles generated by a project that are expected to travel between the project site and various destinations outside the project area. Trip assignment determines the various routes that vehicles are expected to take while travelling between the project site and each destination. For the proposed developments, the trip distribution and assignment were determined based on existing turning movements and TJKM's knowledge of the study area. The trip distribution and assignment for the proposed developments are shown in Figure 3.

Increase in Weekday Daily Traffic

For the three study roadway segments, comparisons between the existing weekday daily traffic and the weekday daily traffic generated by the proposed developments are shown in Table IV. All traffic volumes include traffic in both directions.

Study De edway	Traffic Volumes under Existing	Traffic Proposed De	Percent Increase Due to Proposed		
Study Roadway	Conditions (Trips)	Bassard Tract #7303	Fairview LLC Tract #7921	Total	Developments
Fairview Avenue (South of 'D' Street)	4836	15	112	127	2.6%
'D' Street (West of Maud Avenue)	5615	62	50	112	2.0%
Maud Avenue (North of 'D' Street)	6542	77	62	139	2.1%

Table IV: Weekday Daily Traffic Comparison for Proposed Development

The increase in weekday daily traffic resulting with the proposed developments is less than three percent, and thus considered to be less than significant, for all study roadway segments.

)

100

9

Existing Conditions plus Proposed Development plus Other Development (Scenario 2)

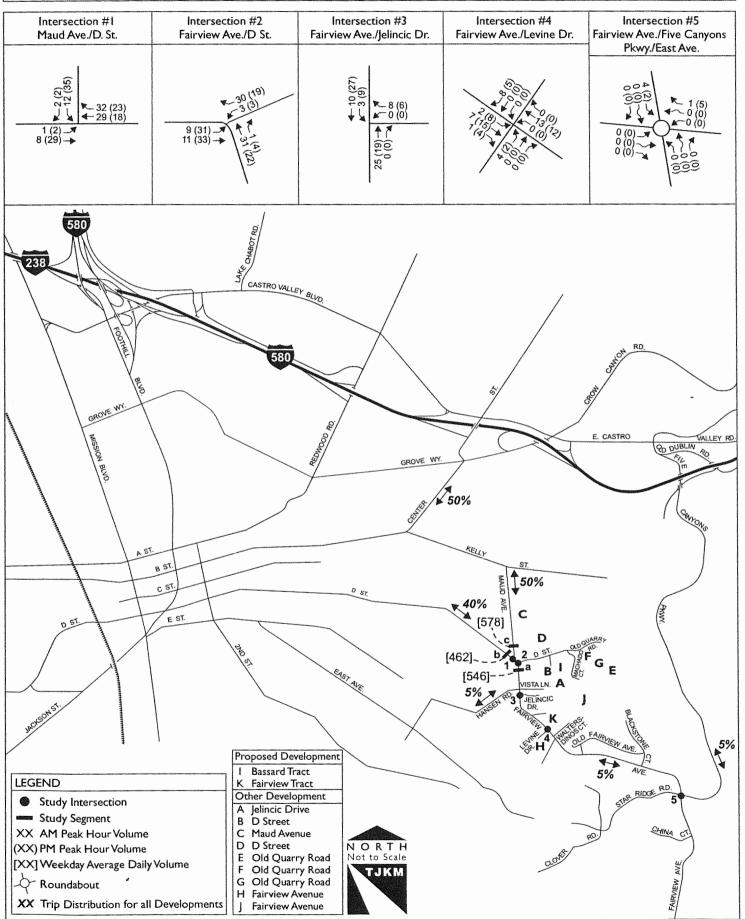
Other Development Description

Information regarding potential development in the area surrounding the proposed developments at Bassard Tract #7303 and Fairview LLC Tract #7921 was provided by the County of Alameda. The County also provided information regarding the maximum build-out allowed by zoning restrictions for these potential other developments. Although maximum build-out would be unlikely due to substantial slopes of the terrain, the expected parking needs, and the access issues that would affect development on the vacant parcels considered, the maximum density was assumed for this analysis, resulting in assumed additional development of 91 units.

Trip Generation

Trip generation for the potential other developments was determined using "trip generation per dwelling unit" rates obtained from *Trip Generation*, 8th Edition, published by ITE. If maximum density were reached at the parcels being considered, the additional development of 91 units would generate a total of 70 trips during the a.m. peak hour, 91 trips during the p.m. peak hour, and 878 average weekday daily trips. The locations and trip generation for the additional development during the peak hours are summarized in Table V. The average daily weekday trip generation is summarized in Table VI.

Figure 4				A.M.	A.M. Peak Hour			P.M. Peak Hour				
Symbol	Parcel Location	Size	Rate	ln: Out	In	Out	Total	Rate	ln: Out	In	Out	Total
А	Jelincic Dr., east of Fairview Ave.	15 Units	0.75	25:75	3	8	11	1.01	63:37	9	6	15
В	'D' St., east of Fairview Ave.	10 Units	0.75	25:75	2	6	8	1.01	63:37	6	4	10
С	Maud Ave., north of 'D' St.	8 Units	0.75	25:75	I	5	6	1.01	63:37	5	3	8
D	'D' St., east of Fairview Ave.	8 Units	0.75	25:75	I	5	6	1.01	63:37	5	3	8
E	Old Quarry Rd., east of Fairview Ave. at 'D' St.	II Units	0.75	25:75	2	6	8	1.01	63:37	7	4	11
F	Old Quarry Rd., east of Fairview Ave. at 'D' St.	2 Units	0.75	25:75	0	2	2	1.01	63:37	1	1	2
G	Old Quarry Rd., east of Fairview Ave. at 'D' St.	9 Units	0.75	25:75	2	5	7	1.01	63:37	6	3	9
н	Fairview Ave., southeast of Levine Dr. at Fairview Ave.		0.75	25:75	1	4	5	1.01	63:37	4	2	6
J	Fairview Ave., east of Levine Dr.	22 Units	0.75	25:75	4	13	17	1.01	63:37	14	8	22
Other	Development Total	91 Units			16	54	70		1	57	34	91


Table V: Peak Hour Trip Generation for Other Development

Note: Single-Family Detached Housing Land Use (ITE Code 210) was assumed for all developments.

Draft Report - Traffic Impact Study for the Residential Developments at Bassard Tract #7303 and Fairview LLC Tract #7921

Page 11 November 9, 2009

Alameda County - Bassard Tract #7303 and Fairview LLC Tract #7921 Traffic StudyFigureProposed Development + Other Development Trip Distribution and Assignment4

14-132 - 11/6/09 - TR

Level of Service Analysis

Table VIII presents a summary of the peak hour level of service analysis for each of the study intersections for the Existing Conditions (Scenario 1) and the Existing Conditions plus Proposed Development plus Other Development (Scenario 2). Level of service worksheets are provided in Appendix E.

ID	Intersection	Control	Scenario I Existing Conditions A.M. Peak P.M. Peak Hour Hour		Peak	Prop Ot	isting Co osed De ther De Peak	ario 2 onditions evelopme velopme P.M. Ho	ent + nt Peak	
			Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1	'D' Street / Maud Avenue	All-Way Stop	8.7	А	9.3	А	9.0	А	10.1	В
2	Fairview Avenue / 'D' Street	Minor Street Approach Stop	11.5	В	9.9	А	12.5	В	10.7	В
3	Fairview Avenue / Jelincic Drive	Minor Street Approach Stop	10.0	В	9.0	А	10.4	В	9.2	Α
4	Fairview Avenue / Levine Drive	Minor Approaches Stop or Yield	10.3	В	10.1	A	11.5	В	10.9	В
5	Fairview Avenue / Five Canyons Parkway / Star Ridge Road	Roundabout	7.6	А	8.4	A	7.6	A	8.4	А

Note: Delay = Average Delay in seconds per vehicle

LOS = Level of Service

The delay and LOS at the all-way stop controlled intersection are for the overall intersection performance. The delay and LOS at intersections with stop or yield control on the minor approaches are for the worst-case minor approach.

The delay and LOS at the roundabout intersection are for the overall intersection performance.

For Existing Conditions plus Proposed Development plus Other Development (Scenario 2), all of the five study intersections operate at acceptable levels of service.

Increase in Daily Traffic

For the three study roadway segments, comparisons between the weekday traffic under existing conditions and the weekday traffic generated by the proposed and potential other developments are shown in Table IX. All traffic volumes include traffic in both directions.

Study Roadway	oadway under Existing Traffic Volumes due to Proposed Developments				Percent Increase Due to All	
	Conditions (Trips)	Proposed	Other	Total	Developments	
Fairview Avenue (South of 'D' Street)	4836	127	419	546	11.3%	
'D' Street (West of Maud Avenue)	5615	112	350	462	8.2%	
Maud Avenue (North of 'D' Street)	6542	139	439	578	8.8%	

))

Study Participants and References

TJKM Transportation Consultants

Project Manager
Project Engineer
Project Engineer
Graphics
Word Processing

Others

John Bates	County of Alameda
Jana Beatty	County of Alameda
Jeff Bonekemper	County of Alameda

References

Trip Generation, 8th Edition, Institute of Transportation Engineers, 2008.

Countywide Transportation Plan, Alameda County Congestion Management Agency, 2008.

APPENDIX A LEVEL OF SERVICE

The description and procedures for calculating capacity and level of service (LOS) are found in Transportation Research Board, *Highway Capacity Manual 2000*. *Highway Capacity Manual 2000* represents the latest research on capacity and quality of service for transportation facilities.

Quality of service requires quantitative measures to characterize operational conditions within a traffic stream. LOS is a quality measure describing operational conditions within a traffic stream, generally in terms of such service measures as speed and travel time, freedom to maneuver, traffic interruptions, and comfort and convenience.

Six levels of service are defined for each type of facility that has analysis procedures available. Letters designate each level, from A to F, with LOS A representing the best operating conditions and LOS F the worst. Each LOS represents a range of operating conditions and the driver's perception of these conditions. Safety is not included in the measures that establish service levels.

A general description of service levels for various types of facilities is shown in Table A-I

	Uninterrupted Flow	Interrupted Flow
	Freeways	Signalized Intersections
Facility Type	Multi-lane Highways	Unsignalized Intersections
	Two-lane Highways	Two-way Stop Control
	Urban Streets	All-way Stop Control
LOS		
A	Free-flow	Very low delay.
В	Stable flow. Presence of other users noticeable.	Low delay.
С	Stable flow. Comfort and convenience starts to decline.	Acceptable delay.
D	High-density stable flow.	Tolerable delay.
E	Unstable flow.	Limit of acceptable delay.
F	Forced or breakdown flow.	Unacceptable delay

Table A-I: Level of Service Description

Source: Highway Capacity Manual 2000

Urban Streets

The term "urban streets" refers to urban arterials and collectors, including those in downtown areas.

Arterial streets are roads that primarily serve longer through trips. However, providing access to abutting commercial and residential land uses is also an important function of arterials. Collector streets provide both land access and traffic circulation within residential, commercial and industrial areas. Their access function is more important than that of arterials, and unlike arterials their operation is not always dominated by traffic signals.

Downtown streets are signalized facilities that often resemble arterials. They not only move through traffic but also provide access to local businesses for passenger cars, transit buses, and trucks.

Once classified, the urban street is divided into segments for analysis. An urban street segment is a one-way section of street encompassing a series of blocks or links terminating at a signalized intersection. Adjacent segments of urban streets may be combined to form larger street sections, provided that the segments have similar demand flows and characteristics.

Levels of service are related to the average travel speed of vehicles along the urban street segment or section.

Travel times for existing conditions are obtained by field measurements. The maximum-car technique is used. The vehicle is driven at the posted speed limit unless impeded by actual traffic conditions. In the maximum-car technique, a safe level of vehicular operation is maintained by observing proper following distances and by changing speeds at reasonable rates of acceleration and deceleration. The maximum-car technique provides the best base for measuring traffic performance.

An observer records the travel time and locations and duration of delay. The beginning and ending points are the centers of intersections. Delays include times waiting in queues at signalized intersections. The travel speed is determined by dividing the length of the segment by the travel time. Once the travel speed on the arterial is determined, the LOS is found by comparing the speed to the criteria in Table A-IV. LOS criteria vary for the different classifications of urban street, reflecting differences in driver expectations.

Criterion	Functional Category													
Criterion	Principal	Arterial	Minor A	rterial										
Mobility function	Very im	portant	Impor	rtant										
Access function	Very r	ninor	Substantial											
Points connected	Freeways, important a traffic ger	nerators	Principal	arterials										
Predominant trips served	Relatively long trips b and through trips er passing thr	ntering, leaving, and	Trips of moderate ler small geogra											
Cuita uni una		Design	Category											
Criterion	High-Speed	Suburban	Intermediate	Urban										
Driveway access density	Very low density	Low density	Moderate density	High density										
Arterial type	Multilane divided; undivided or two- lane with shoulders	Multilane divided: undivided or two- lane with shoulders	Multilane divided or undivided; one way, two lane	Undivided one way; two way, two or more lanes										
Parking	No	No	Some	Usually										
Separate left-turn lanes	Yes	Yes	Usually	Some										
Signals per mile	0.5 to 2	l to 5	4 to 10	6 to 12										
Speed limits	45 to 55 mph	40 to 45 mph	30 to 40 mph	25 to 35 mph										
Pedestrian activity	Very little	Little	Some	Usually										
Roadside development	Low density	Low to medium density	Medium to moderate density	High density										

Table A-II: Functional and Design Categories for Urban Streets

Source: Highway Capacity Manual 2000

Two-Way Stop Controlled Intersections

)

う う う Two-way stop controlled intersections in which stop signs are used to assign the right-of-way, are the most prevalent type of intersection in the United States. At two-way stop-controlled intersections the stop-controlled approaches are referred as the minor street approaches and can be either public streets or private driveways. The approaches that are not controlled by stop signs are referred to as the major street approaches.

The capacity of movements subject to delay are determined using the "critical gap" method of capacity analysis. Expected average control delay based on movement volume and movement capacity is calculated. A LOS designation is given to the expected control delay for each minor movement. LOS is not defined for the intersection as a whole. Control delay is the increased time of travel for a vehicle approaching and passing through a stop-controlled intersection, compared with a free-flow vehicle if it were not required to slow or stop at the intersection. A description of levels of service for two-way stop-controlled intersections is found in Table A-VI.

Table A-VI: Description of Level of Service for Two-Way Stop Controlled Intersections

LOS	Description
А	Very low control delay less than 10 seconds per vehicle for each movement subject to delay.
В	Low control delay greater than 10 and up to 15 seconds per vehicle for each movement subject to delay.
с	Acceptable control delay greater than 15 and up to 25 seconds per vehicle for each movement subject to delay.
D	Tolerable control delay greater than 25 and up to 35 seconds per vehicle for each movement subject to delay.
E	Limit of tolerable control delay greater than 35 and up to 50 seconds per vehicle for each movement subject to delay.
F	Unacceptable control delay in excess of 50 seconds per vehicle for each movement subject to delay.
Sou	irce: Highway Capacity Manual 2000

J:\TJKM Appendices\LOS-HCM 2000.doc

APPENDIX B LEVEL OF SERVICE ROUNDABOUT INTERSECTION SUPPLEMENT

The software package SIDRA INTERSECTION (ver4.0) was used to analyze the study roundabout intersection. SIDRA uses advance gap acceptance techniques to analyze the roundabout capacity and performance based on empirical models. SIDRA's methodology provides that the capacity and performance of a roundabout are controlled by both driver behavior and the roundabout geometry, i.e. the inscribed circle diameter, circulatory width, and entry and exit radii. Using these and other factors, SIDRA determines the applicable gap-acceptance parameter. Adhering to HCM thresholds for a signalized intersection, the delay and LOS are calculated for each approach of the roundabout and the overall intersection.

Reference: SIDRA INTERSECTION User Guide, July 2007

シシン

File Name	: 1AM FINAL
Site Code	: 00000001
Start Date	: 9/15/2009
Page No	: 1

2	Groups Printed- Vehicles																					
~			M	AUD A	VE				D ST													
÷			So	uthbo	und			We	estbou	und		Northbound										
	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	int. Total
/-	07:00 AM	27	0	12	0	39	34	29	0	0	63	0	0	0	0	0	0	13	17	0	30	132
)	07:15 AM	36	0	15	0	51	30	34	0	0	64	0	0	0	0	0	0	9	14	0	23	138
	07:30 AM	39	0	28	0	67	43	49	0	0	92	0	0	0	0	0	0	7	32	0	39	198
)_	07:45 AM	71	0	33	0	104	48	45	0	0	93	0	0	0	0	0	0	16	41	0	57	254
	Total	173	0	88	0	261	155	157	0	0	312	0	0	0	0	0	0	45	104	0	149	722
	08:00 AM	50	0	53	0	103	31	33	0	0	64	0	0	0	0	0	0	25	20	0	45	212
_)	08:15 AM	28	0	36	0	64	37	34	0	0	71	0	0	0	0	0	0	23	26	0	49	184
25	08:30 AM	30	0	56	0	86	45	45	0	0	90	0	0	0	0	0	0	24	13	0	37	213
9_	08:45 AM	24	0	28	0	52	57	39	0	0	96	0	0	0	0	0	0	10	12	0	22	170
25	Total	132	0	173	0	305	170	151	0	0	321	0	0	0	0	0	0	82	71	0	153	779
2																						1501
3	Grand Total	305	0	261	0	566		308	0	0	633	0	0	0	0	0	0	127	175	0	302	1501
1	Apprch %	53.9	0	46.1	0		51.3	48.7	0	0	10.0	0	0	0	0		0	42.1	57.9	0	00.4	
3	Total %	20.3	0	17.4	0	37.7	21.7	20.5	0	0	42.2	0	0	0	0	0	0	8.5	11.7	0	20.1	
1																						

)

ł ł

	MAUD AVE D S																	DST			
		So	uthbo	und			W	estbo	und			No	und								
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Ar	alysis l	From 0	7:00 A	M to 08	:45 AM -	Peak	1 of 1														
Peak Hour for	Entire	Interse	ection E	Begins a	at 07:45	AM															
07:45 AM	71	0	33	0	104	48	45	0	0	93	0	0	0	0	0	0	16	41	0	57	254
) 08:00 AM	50	0	53	0	103	31	33	0	0	64	0	0	0	0	0	0	25	20	0	45	212
08:15 AM	28	0	36	0	64	37	34	0	0	71	0	0	0	0	0	0	23	26	0	49	184
) 08:30 AM	30	0	56	0	86	45	45	0	0	90	0	0	0	0	0	0	24	13	0	37	213
Total Volume	179	0	178	0	357	161	157	0	0	318	0	0	0	0	0	0	88	100	0	188	863
) % App. Total	50.1	0	49.9	0		50.6	49.4	0	0		0	0	0	0.		0	46.8	53.2	0		
PHF	.630	.000	.795	.000	.858	.839	.872	.000	.000	.855	.000	.000	.000	.000	.000	.000	.880	.610	.000	.825	.849

File Name	: 1PM FINAL
Site Code	: 00000001
Start Date	: 9/15/2009
Page No	: 1

186 ₇ -	Groups Printed- Vehicles																					
-)			M	AUD A	VE				D ST													
1			So	uthbo	und			We	stbou	Ind			No	rthbo	und							
)	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
.,	04:00 PM	21	0	23	0	44	20	20	0	0	40	0	0	0	0	0	0	21	30	0	51	135
)	04:15 PM	30	0	34	0	64	34	19	0	0	53	0	0	0	0	0	0	24	27	0	51	168
	04:30 PM	28	0	30	0	58	25	21	0	0	46	0	0	0	0	0	0	21	33	0	54	158
)	04:45 PM	22	0	27	0	49	26	17	0	0	43	0	0	0	0	0	0	20	27	0	47	139
	Total	101	0	114	0	215	105	77	0	0	182	0	0	0	0	0	0	86	117	0	203	600
)																						
	05:00 PM	26	0	33	0	59	26	21	0	0	47	0	0	0	0	0	0	39	28	0	67	173
(mer	05:15 PM	25	0	31	0	56	33	21	0	· 0	54	0	0	0	0	0	0	36	39	0	75	185
-	05:30 PM	34	0	37	0	71	37	29	0	0	66	0	0	0	0	0	0	41	48	0	89	226
9	05:45 PM	34	0	36	0	70	30	22	0	0	52	0	0	0	0	0	0	33	57	0	90	212
	Total	119	0	137	0	256	126	93	0	0	219	0	0	0	0	0	0	149	172	0	321	796
)																						
Э	Grand Total	220	0	251	0	471	231	170	0	0	401	0	0	0	0	0	0	235	289	0	524	1396
9	Apprch %	46.7	0	53.3	0		57.6	42.4	0	0		0	0	0	0		0	44.8	55.2	0		
	Total %	15.8	0	18	0	33.7	16.5	12.2	0	0	28.7	0	0	0	0	0	0	16.8	20.7	0	37.5	
3																						

)

		M	AUD A	VE				DST									D ST					
		So	uthbo	und			W	estbo	und			No	rthbo	und		Eastbound						
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App, Total	Int. Tot	
Peak Hour An	alysis f	From 0	4:00 P	M to 05	:45 PM -	Peak	1 of 1															
Peak Hour for	Entire	Interse	ection E	Begins a	at 05:00	РМ																
05:00 PM	26	0	33	0	59	26	21	0	0	47	0	0	0	0	0	0	39	28	0	67	17	
05:15 PM	25	0	31	0	56	33	21	0	0	54	0	0	0	0	0	0	36	39	0	75	18	
05:30 PM	34	0	37	0	71	37	29	0	0	66	0	0	0	0	0	0	41	48	0	89	220	
05:45 PM	34	0	36	0	70	30	22	0	0	52	0	0	0	0	0	0	33	57	0	90	21	
Total Volume	119	0	137	0	256	126	93	0	0	219	0	0	0	0	0	0	149	172	0	321	79	
⁹ % App. Total	46.5	0	53.5	0		57.5	42.5	0	0		0	0	0	0		0	46.4	53.6	0			
PHF	.875	.000	.926	.000	.901	.851	.802	.000	.000	.830	.000	.000	.000	.000	.000	.000	.909	.754	.000	.892	.88	

File Name	: 2AM FINAL
Site Code	: 00000002
Start Date	: 9/15/2009
Page No	: 1

.

}									C	Group	s Printe	d- Veh	icles									
1			FAIF	VIEW	AVE			JEL	INCIC	DR			FAI	RVIEW	AVE							
-			So	uthbo	und			We	estbou	Ind			No	rthbo	und			Ea	astbou	Ind		
)	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
_	07:00 AM	0	13	1	0	14	1	0	0	0	1	0	27	0	0	27	0	0	0	0	0	42
1	07:15 AM	0	12	0	0	12	2	0	0	0	2	1	32	0	0	33	0	0	0	0	0	47
	07:30 AM	0	16	1	0	17	5	0	0	0	5	0	63	0	0	63	0	0	0	0	0	85
)	07:45 AM	0	13	1	0	14	3	0	0	0	3	0	39	0	0	39	0	0	0	0	0	56
	Total	0	54	3	0	57	11	0	0	0	11	1	161	0	0	162	0	0	0	0	0	230
)																						
	08:00 AM	0	40	2	0	42	2	0	0	0	2	0	34	0	0	34	0	0	0	0	0	78
_)	08:15 AM	0	26	0	0	26	0	0	0	0	0	0	53	0	0	53	0	0	0	0	0	79
3	08:30 AM	0	21	0	0	21	3	0	0	0	3	0	45	0	0	45	0	0	0	0	0	69
9	08:45 AM	0	15	1	0	16	0	0	0	0	0	0	42	0	0	42	0	0	0	0	0	58
)	Total	0	102	3	0	105	5	0	0	0	5	0	174	0	0	174	0	0	0	0	0	284
Э	Grand Total	0	156	6	0	162	16	0	0	0	16	1	335	0	0	336	0	0	0	0	0	514
100	Apprch %	0	96.3	3.7	0		100	0	0	0		0.3	99.7	0	0		0	0	0	0		
)	Total %	0	30.4	1.2	0	31.5	3.1	0	0	0	3.1	0.2	65.2	0	0	65.4	0	0	0	0	0	

)																						
				RVIEW					LINCIC					RVIEW				E	astbou	und		
)	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Totai	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
	Peak Hour An	alysis f	From 0	7:00 A	M to 08	:45 AM -	- Peak	1 of 1														
)	Peak Hour for	Entire	Interse	ection E	Begins a	at 07:30	AM															
	07:30 AM	0	16	1	0	17	5	0	0	0	5	0	63	0	0	63	0	0	0	0	0	85
)	07:45 AM	0	13	1	0	14	3	0	0	0	3	0	39	0	0	39	0	0	0	0	0	56
1	08:00 AM	0	40	2	0	42	2	0	0	0	2	0	34	0	0	34	0	0	0	0	0	78
)	08:15 AM	0	26	0	0	26	0	0	0	0	0	0	53	0	0	53	0	0	0	0	0	79
7	Total Volume	0	95	4	0	99	10	0	0	0	10	0	189	0	0	189	0	0	0	0	0	298
Ĵ	% App. Total	0	96	4	0		100	0	0	0		0	100	0	0		0	0	0	0		
)	PHF	.000	.594	.500	.000	.589	.500	.000	.000	.000	.500	.000	.750	.000	.000	.750	.000	.000	.000	.000	.000	.876

)

)

)

File Name	: 2PM FINAL
Site Code	: 00000002
Start Date	: 9/15/2009
Page No	: 1

.

,									(Group	s Printe	d- Veh	icles									
			FAIF	RVIEW	AVE			JEL	INCIC	DR			FAI	RVIEW	AVE							
,			So	uthbo	und			W	estbou	Ind			No	orthbo	und			Ea	astbou	nd		
Ì	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
	04:00 PM	0	31	1	0	32	0	0	0	0	0	0	26	0	0	26	0	0	0	0	0	58
)	04:15 PM	0	28	1	0	29	2	0	0	0	2	0	22	0	0	22	0	0	0	0	0	53
	04:30 PM	0	29	1	0	30	0	0	0	0	0	0	19	0	0	19	0	0	0	0	0	49
}	04:45 PM	0	32	2	0	34	0	0	1	0	1	0	29	0	0	29	0	0	0	0	0	64
	Total	0	120	5	0	125	2	0	1	0	3	0	96	0	0	96	0	0	0	0	0	224
)																						
	05:00 PM	0	42	1	0	43	2	0	0	0	2	0	22	0	0	22	0	0	0	0	0	67
	05:15 PM	0	37	3	0	40	1	0	0	0	1	0	29	0	0	29	0	0	0	0	0	70
25	05:30 PM	0	33	2	0	35	2	0	0	0	2	0	29	0	0	29	0	0	0	0	0	66
3	05:45 PM	0	45	0	0	45	0	0	0	0	0	0	23	0	0	23	0	0	0	0	0	68
	Total	0	157	6	0	163	5	0	0	0	5	0	103	0	0	103	0	0	0	0	0	271
J																						
1	Grand Total	0	277	11	0	288	7	0	1	0	8	0	199	0	0	199	0	0	0	0	0	495
1	Apprch %	0	96.2	3.8	0		87.5	0	12.5	0		0	100	0	0		0	0	0	0		
1	Total %	0	56	2.2	0	58.2	1.4	0	0.2	0	1.6	0	40.2	0	0	40.2	0	0	0	0	0	
Ť																						

- W				RVIEW										RVIEW				_				
D_			So	uthbo	und			W	estbo	und			No	orthbo	und			Ea	astbou	Ind		
)	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Ę	eak Hour An	alysis l	From 04	4:00 P	M to 05	:45 PM -	Peak	1 of 1														
) (eak Hour for	Entire	Interse	ection E	Begins a	at 05:00	PM															
	05:00 PM	0	42	1	0	43	2	0	0	0	2	0	22	0	0	22	0	0	0	0	0	67
)	05:15 PM	0	37	3	0	40	1	0	0	0	1	0	29	0	0	29	0	0	0	0	0	70
	05:30 PM	0	33	2	0	35	2	0	0	0	2	0	29	0	0	29	0	0	0	0	0	66
3	05:45 PM	0	45	0	0	45	0	0	0	0	0	0	23	0	0	23	0	0	0	0	0	68
\ \	Total Volume	0	157	6	0	163	5	0	0	0	5	0	103	0	0	103	0	0	0	0	0	271
)	% App. Total	0	96.3	3.7	0		100	0	0	0		0	100	0	0		0	0	0	0		
1	PHF	.000	.872	.500	.000	.906	.625	.000	.000	.000	.625	.000	.888.	.000	.000	.888	.000	.000	.000	.000	.000	.968

File Name	: 3AM FINAL
Site Code	: 0000003
Start Date	: 9/15/2009
Page No	: 1

7										Groups	s Printe	d- Veh	icles									
			FAIF	RVIEW	AVE								FAIF	RVIEW	/ AVE			LE	VINE	DR		
)			So	uthbo	und			We	estbou	und			No	orthbo	und			Ea	astbou	Ind		
)	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
/	07:00 AM	2	12	0	0	14	0	0	0	0	0	0	24	0	0	24	0	0	3	0	3	41
}	07:15 AM	0	14	0	0	14	0	0	0	0	0	0	29	1	0	30	0	0	0	0	0	44
	07:30 AM	0	19	0	0	19	0	0	0	0	0	0	60	0	0	60	0	0	1	0	1	80
)	07:45 AM	0	21	0	0	21	0	0	0	0	0	0	38	0	0	38	1	0	2	0	3	62
_	Total	2	66	0	0	68	0	0	0	0	0	0	151	1	0	152	1	0	6	0	7	227
)																						
	08:00 AM	0	30	0	0	30	0	0	0	0	0	0	35	0	0	35	0	0	0	0	0	65
)	08:15 AM	· 0	35	0	0	35	0	0	0	0	0	0	44	0	0	44	0	0	0	0	0	79
	08:30 AM	0	20	0	0	20	0	0	0	0	0	0	47	0	0	47	0	0	0	0	0	67
)	08:45 AM	0	18	0	0	18	0	0	0	0	0	0	42	1	0	43	0	0	0	0	0	61
<u>_</u>	Total	0	103	0	0	103	0	0	0	0	0	0	168	1	0	169	0	0	0	0	0	272
9												,							_		_	
3	Grand Total	2	169	0	0	171	0	0	0	0	0	0	319	2	0	321	1	0	6	0	7	499
	Apprch %	1.2	98.8	0	0		0	0	0	0		0	99.4	0.6	0		14.3	0	85.7	0		
	Total %	0.4	33.9	0	0	34.3	0	0	0	0	0	0	63.9	0.4	0	64.3	0.2	0	1.2	0	1.4	
3																						

ς.		
	٦	
	2	
	1	

1

......

ø			FAI	RVIEW	/ AVE									RVIEW		-			VINE			
			So	uthbo	und			W	estbo	und			No	orthbo	und			Ea	astbou	und		
)	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
I	Peak Hour An	alysis I	From 0	7:00 Al	M to 08	:45 AM ·	Peak 1	1 of 1														
	Peak Hour for	Entire	Interse	ection E	Begins a	at 07:30	AM															
	07:30 AM	0	19	0	0	19	0	0	0	0	0	0	60	0	0	60	0	0	1	0	1	80
)	07:45 AM	0	21	0	0	21	0	0	0	0	0	0	38	0	0	38	1	0	2	0	3	62
	08:00 AM	0	30	0	0	30	0	0	0	0	0	0	35	0	0	35	0	0	0	0	0	65
)	08:15 AM	0	35	0	0	35	0	0	0	0	0	0	44	0	0	44	0	0	0	0	0	79
	Total Volume	0	105	0	0	105	0	0	0	0	0	0	177	0	0	177	1	0	3	0	4	286
)	% App. Total	0	100	0	0		0	0	0	0		0	100	0	0		25	0	75	0		
	PHF	.000	.750	.000	.000	.750	.000	.000	.000	.000	.000	.000	.738	.000	.000	.738	.250	.000	.375	.000	.333	.894
1																						

File Name	: 3PM FINAL
Site Code	: 0000003
Start Date	: 9/15/2009
Page No	: 1

2									(Groups	s Printe	d-Veh	icles									
1			FAIR	VIEW	AVE								FAI	RVIEW	AVE			LE	VINE	DR		
,			So	uthbo	und			We	estbou	und			No	rthbo	und			Ea	stbou	nd		
)	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
	04:00 PM	0	26	0	0	26	0	0	0	0	0	0	25	0	0	25	0	0	0	0	0	51
)	04:15 PM	0	25	0	0	25	0	0	0	0	0	0	20	0	0	20	1	0	0	0	1	46
	04:30 PM	0	24	0	0	24	0	0	0	0	0	0	22	0	0	22	0	0	1	0	1	47
)	04:45 PM	1	31	0	0	32	0	0	0	0	0	0	27	1	0	28	0	0	0	0	0	60
	Total	1	106	0	0	107	0	0	0	0	0	0	94	1	0	95	1	0	1	0	2	204
)																						
· .	05:00 PM	1	39	0	0	40	0	0	0	0	0	0	24	0	0	24	0	0	0	0	0	64
)	05:15 PM	0	37	0	0	37	0	0	0	0	0	0	34	0	0	34	0	0	0	0	0	71
5	05:30 PM	0	33	0	0	33	0	0	0	0	0	0	31	0	0	31	0	0	1	0	1	65
9	05:45 PM	0	43	0	0	43	0	0	0	0	0	0	22	0	0	22	0	0	2	0	2	67
\rangle	Total	1	152	0	0	153	0	0	0	0	0	0	111	0	0	111	0	0	3	0	3	267
15	Grand Total	2	258	0	0	260	0	0	0	0	0	0	205	1	0	206	1	0	4	0	5	471
2	Apprch %	0.8	99.2	0	0		0	0	0	0		0	99.5	0.5	0		20	0	80	0		
)	Total %	0.4	54.8	0	0	55.2	0	0	0	0	0	0	43.5	0.2	0	43.7	0.2	0	0.8	0	1.1	

			RVIEW uthbo		-		W	estbo	und				RVIEW					VINE astbou			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour An	-						1 of 1														
Peak Hour for	Entire	Interse	ction E	legins a	at 05:00	PM															
05:00 PM	1	39	0	0	40	0	0	0	0	0	0	24	0	0	24	0	0	0	0	0	64
05:15 PM	0	37	0	0	37	0	0	0	0	0	0	34	0	0	34	0	0	0	0	0	71
05:30 PM	0	33	0	0	33	0	0	0	0	0	0	31	0	0	31	0	0	1	0	1	65
05:45 PM	0	43	0	0	43	0	0	0	0	0	0	22	0	0	22	0	0	2	0	2	67
Total Volume	1	152	0	0	153	0	0	0	0	0	0	111	0	0	111	0	0	3	0	3	267
% App. Total	0.7	99.3	0	0		0	0	0	0		0	100	0	0		0	0	100	0		
PHF	.250	.884	.000	.000	.890	.000	.000	.000	.000	.000	.000	.816	.000	.000	.816	.000	.000	.375	.000	.375	.940

)

File Name	: 4AM FINAL
Site Code	: 00000004
Start Date	: 9/15/2009
Page No	: 1

}									(Group	s Printe	d-Veh	icles									
1									D ST				FAIF	RVIEW	/ AVE				D ST			
ţ			So	uthbo	und			We	estbou	und			No	rthbo	und			Ea	istbou	Ind		
)_	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
	07:00 AM	0	0	0	0	0	0	18	1	0	19	0	0	49	0	49	17	10	0	0	27	95
}	07:15 AM	0	0	0	0	0	0	13	4	0	17	0	0	49	0	49	17	2	0	0	19	85
	07:30 AM	0	0	0	0	0	0	16	3	0	19	2	0	78	0	80	30	3	0	0	33	132
)_	07:45 AM	0	0	0	0	0	0	15	0	0	15	0	0	79	0	79	44	5	0	0	49	143
	Total	0	0	0	0	0	0	62	8	0	70	2	0	255	0	257	108	20	0	0	128	455
)																						
	08:00 AM	0	0	0	0	0	0	6	2	0	8	0	0	62	0	62	71	7	0	0	78	148
)	08:15 AM	0	0	0	0	0	0	10	0	0	10	2	0	57	0	59	54	6	0	0	60	129
-	08:30 AM	0	0	0	0	0	0	11	2	0	13	0	0	82	0	82	75	8	0	0	83	178
9_	08:45 AM	0	0	0	0	0	0	8	0	0	8	3	0	91	0	94	36	1	0	0	37	139
)	Total	0	0	0	0	0	0	35	4	0	39	5	0	292	0	297	236	22	0	0	258	594
3	Grand Total	0	0	0	0	0	0	97	12	0	109	7	0	547	0	554	344	42	0	0	386	1049
Ş	Apprch %	0	0	0	0		0	89	11	0		1.3	0	98.7	0		89.1	10.9	0	0		
)	Total %	0	0	0	0	0	0	9.2	1.1	0	10.4	0.7	0	52.1	0	52.8	32.8	4	0	0	36.8	

)

B.									D ST				FAI	RVIEW	/ AVE				D ST			
			So	uthbo	und			W	estbo	und			No	orthbo	und			E	astbou	Ind		
)	Start Time	Right	Thru	Left	Peds	App. Totai	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Ę	Peak Hour An	alysis I	From 0	7:00 A	M to 08	:45 AM ·	Peak	1 of 1														
) F	Peak Hour for	Entire	Interse	ection E	Begins a	at 07:45	AM															
	07:45 AM	0	0	0	0	0	0	15	0	0	15	0	0	79	0	79	44	5	0	0	49	143
2	08:00 AM	0	0	0	0	0	0	6	2	0	8	0	0	62	0	62	71	7	0	0	78	148
,	08:15 AM	0	0	0	0	0	0	10	0	0	10	2	0	57	0	59	54	6	0	0	60	129
)	08:30 AM	0	0	0	0	0	0	11	2	0	13	0	0	82	0	82	75	8	0	0	83	178
,	Total Volume	0	0	0	0	0	0	42	4	0	46	2	0	280	0	282	244	26	0	0	270	598
)	% App. Total	0	0	0	0		0	91.3	8.7	0		0.7	0	99.3	0		90.4	9.6	0	0		
à-	PHF	.000	.000	.000	.000	.000	.000	.700	.500	.000	.767	.250	.000	.854	.000	.860	.813	.813	.000	.000	.813	.840

.

File Name	: 4PM FINAL
Site Code	: 00000004
Start Date	: 9/15/2009
Page No	:1

}									(Group	s Printe	d-Veh	icles									
1									D ST				FAIF	RVIEW	AVE				D ST			
			So	uthbo	und			We	estbo	und			No	rthbo	und			Ea	istbou	Ind		
}	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
	04:00 PM	0	0	0	0	0	0	5	1	0	6	3	0	37	0	40	39	9	0	0	48	94
)	04:15 PM	0	0	0	0	0	0	8	1	0	9	0	0	41	0	41	47	8	0	0	55	105
	04:30 PM	0	0	0	0	0	0	6	0	0	6	1	0	36	0	37	44	10	0	0	54	97
)	04:45 PM	0	0	0	0	0	0	10	1	0	11	0	0	38	0	38	37	7	0	0	44	93
	Total	0	0	0	0	0	0	29	3	0	32	4	0	152	0	156	167	34	0	0	201	389
-)-																						
	05:00 PM	0	0	0	0	0	0	5	0	0	5	5	0	31	0	36	59	7	0	0	66	107
	05:15 PM	0	0	0	0	0	0	11	0	0	11	1	0	43	0	44	57	12	0	0	69	124
~	05:30 PM	0	0	0	0	0	0	7	0	0	7	0	0	57	0	57	62	14	0	0	76	140
9	05:45 PM	0	0	0	0	0	0	8	0	0	8	2	0	46	0	48	59	12	0	0	71	127
-	Total	0	0	0	0	0	0	31	0	0	31	8	0	177	0	185	237	45	0	0	282	498
1											1		-		_							
	Grand Total	0	0	0	0	0	0	60	3	0	63	12	0	329	0	341	404	79	0	0	483	887
J.F	Apprch %	0	0	0	0		0	95.2	4.8	0		3.5	0	96.5	0		83.6	16.4	0	0		
3	Total %	0	0	0	0	0	0	6.8	0.3	0	7.1	1.4	0	37.1	0	38.4	45.5	8.9	0	0	54.5	
3																						

)

2																						
					-				D ST				FAI	RVIEW	AVE				D ST			
			So	uthbo	und			W	estbo	und			No	orthbo	und			Ea	astbou	Ind		
) Sta	art Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak	k Hour An	alysis I	From 0	4:00 P	M to 05	:45 PM -	Peak	1 of 1														
)Peak	k Hour for	Entire	Interse	ection E	Begins a	at 05:00	PM															
0	5:00 PM	0	0	0	0	0	0	5	0	0	5	5	0	31	0	36	59	7	0	0	66	107
) 0	5:15 PM	0	0	0	0	0	0	11	0	0	11	1	0	43	0	44	57	12	0	0	69	124
0	5:30 PM	0	0	0	0	0	0	7	0	0	7	0	0	57	0	57	62	14	0	0	76	140
0	5:45 PM	0	0	0	0	0	0	8	0	0	8	2	0	46	0	48	59	12	0	0	71	127
Tota	al Volume	0	0	0	0	0	0	31	0	0	31	8	0	177	0	185	237	45	0	0	282	498
% A	App. Total	0	0	0	0		0	100	0	0		4.3	0	95.7	0		84	16	0	0		
	PHF	.000	.000	.000	.000	.000	.000	.705	.000	.000	.705	.400	.000	.776	.000	.811	.956	.804	.000	.000	.928	.889

s

)

File Name	: 5AM FINAL
Site Code	: 00000005
Start Date	: 9/15/2009
Page No	: 1

,									(Group	s Printe	d-Veh	icles									
1			FAIF	RVIEW	AVE		FI	VE CA	NYON	IS PK	WY		FAI	RVIEW	AVE			STAF	RIDO	SE RD		
1			So	uthbo	und			W	estbou	und			No	orthbo	und			Ea	istbou	Ind		
)	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
	07:00 AM	0	5	7	0	12	15	1	13	0	29	28	4	0	0	32	2	2	3	0	7	80
)	07:15 AM	2	6	6	0	14	38	0	19	0	57	45	13	0	0	58	3	6	3	0	12	141
	07:30 AM	0	6	18	0	24	22	1	25	0	48	23	9	1	0	33	0	6	6	0	12	117
)	07:45 AM	2	20	10	0	32	22	2	30	0	54	30	8	1	0	39	3	2	4	0	9	134
	Total	4	37	41	0	82	97	4	87	0	188	126	34	2	0	162	8	16	16	0	40	472
)																						
·	08:00 AM	3	23	7	0	33	23	3	25	0	[,] 51	33	18	0	0	51	1	4	2	0	7	142
)	08:15 AM	1	14	5	0	20	18	2	23	0	43	30	18	0	0	48	0	5	8	0	13	124
1	08:30 AM	4	9	6	0	19	19	1	14	0	34	30	19	0	0	49	1	1	4	0	6	108
4	08:45 AM	0	5	7	0	12	21	3	15	0	39	30	7	1	0	38	0	2	0	0	2	91
<u>م</u>	Total	8	51	25	0	84	81	9	77	0	167	123	62	1	0	186	2	12	14	0	28	465
2																						
	Grand Total	12	88	66	0	166	178	13	164	0	355	249	96	3	0	348	10	28	30	0	68	937
1	Apprch %	7.2	53	39.8	0		50.1	3.7	46.2	0		71.6	27.6	0.9	0		14.7	41.2	44.1	0		
1	Total %	1.3	9.4	7	0	17.7	19	1.4	17.5	0	37.9	26.6	10.2	0.3	0	37.1	1.1	3	3.2	0	7.3	
1																						

A .				RVIEW			F	VE CA	NYON		ŴΥ			RVIEW					R RIDO	SE RD		
₹.				uuno	unu			44	esinoi	unu			- NC	n uiso	unu				131000			
)	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
्री	Peak Hour An	alysis I	From 0	7:00 A	M to 08	:45 AM -	Peak	1 of 1														
1	Peak Hour for	- Entire	Interse	ection E	Begins a	at 07:15	AM															
	07:15 AM	2	6	6	0	14	38	0	19	0	57	45	13	0	0	58	3	6	3	0	12	141
)	07:30 AM	0	6	18	0	24	22	1	25	0	48	23	9	1	0	33	0	6	6	0	12	117
1	07:45 AM	2	20	10	0	32	22	2	30	0	54	30	8	1	0	39	3	2	4	0	9	134
)	08:00 AM	3	23	7	0	33	23	3	25	0	51	33	18	0	0	51	1	4	2	0	7	142
	Total Volume	7	55	41	0	103	105	6	99	0	210	131	48	2	0	181	7	18	15	0	40	534
*14 *	% App. Total	6.8	53.4	39.8	0		50	2.9	47.1	0		72.4	26.5	1.1	0		17.5	45	37.5	0		
	PHF	.583	.598	.569	.000	.780	.691	.500	.825	.000	.921	.728	.667	.500	.000	.780	.583	.750	.625	.000	.833	.940

المسلح المسلح المسلح

)

.

File Name	: 5PM FINAL
Site Code	: 00000005
Start Date	: 9/15/2009
Page No	: 1

									(Group	s Printe	d- Veh	icles									
1			FAIF	RVIEW	AVE		FI	VECA	NYON	IS PK	NY		FAIF	VIEW	AVE			STAF	RIDO	E RD		
1			So	uthbo	und			W	estbou	und			No	rthbo	und			Ea	istbou	nd		
}	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
	04:00 PM	6	11	10	0	27	13	3	24	0	40	28	14	1	0	43	0	1	2	0	3	113
-)	04:15 PM	4	6	11	0	21	10	3	24	0	37	20	6	4	0	30	1	3	2	0	6	94
	04:30 PM	3	9	11	0	23	10	4	29	0	43	27	5	0	0	32	0	3	3	0	6	104
)	04:45 PM	1	11	15	0	27	18	5	31	0	54	25	10	2	0	37	1	5	3	0	9	127
	Total	14	37	47	0	98	51	15	108	0	174	100	35	7	0	142	2	12	10	0	24	438
3																						
~	05:00 PM	7	12	20	0	39	7	7	23	0	37	26	13	2	0	41	0	3	1	0	4	121
)	05:15 PM	3	12	18	0	33	15	3	26	0	44	19	12	1	0	32	0	2	3	0	5	114
3	05:30 PM	3	14	20	0	37	14	1	48	0	63	27	12	1	0	40	1	4	5	0	10	150
2_	05:45 PM	6	18	12	0	36	12	3	38	0	53	21	4	0	0	25	0	2	4	0	6	120
)	Total	19	56	70	0	145	48	14	135	0	197	93	41	4	0	138	1	11	13	0	25	505
2	Grand Total	33	93	117	0	243	99	29	243	0	371	193	76	11	0	280	3	23	23	0	49	943
1	Apprch %	13.6	38.3	48.1	0		26.7	7.8	65.5	0		68.9	27.1	3.9	0		6.1	46.9	46.9	0		
)	Total %	3.5	9.9	12.4	0	25.8	10.5	3.1	25.8	0	39.3	20.5	8.1	1.2	0	29.7	0.3	2.4	2.4	0	5.2	

2																						
				RVIEW			F	IVE CA W	ANYON		WY			RVIEW					R RIDO	GE RD und		
)	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Ē	Peak Hour An	alysis l	From 0	4:00 P	M to 05	:45 PM -	- Peak	1 of 1														
) F	Peak Hour for	Entire	Interse	ection E	Begins a	at 04:45	PM															
`	04:45 PM	1	11	15	0	27	18	5	31	0	54	25	10	2	0	37	1	5	3	0	9	127
)	05:00 PM	7	12	20	0	39	7	7	23	0	37	26	13	2	0	41	0	3	1	0	4	121
,	05:15 PM	3	12	18	0	33	15	3	26	0	44	19	12	1	0	32	0	2	3	0	5	114
and the second	05:30 PM	3	14	20	0	37	14	1	48	0	63	27	12	1	0	40	1	4	5	0	10	150
	Total Volume	14	49	73	0	136	54	16	128	0	198	97	47	6	0	150	2	14	12	0	28	512
1	% App. Total	10.3	36	53.7	0		27.3	8.1	64.6	0		64.7	31.3	4	0		7.1	50	42.9	0		
1_	PHF	.500	.875	.913	.000	.872	.750	.571	.667	.000	.786	.898	.904	.750	.000	.915	.500	.700	.600	.000	.700	.853

Traffic Data Service Vehicle Counts

VehicleCount-2019 -- English (ENU)

)

0000

ううう

Ì

)

Datasets:	
Site:	[1N] NB FAIRVIEW AVE S/O D ST
Direction:	7 - North bound A>B, South bound B>A., Lane: 0
Included classes:	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Speed range:	5 - 100 mph.
Direction:	North (bound)
Separation:	All - (Headway)
Name:	Factory default profile
Scheme:	Vehicle classification (Scheme F)
Units:	Non metric (ft, mi, ft/s, mph, lb, ton)

* Tuesday, September 22, 2009 - Total=2388, 15 minute drops

	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
	5	8	3	8	22	44	125	250	256	144	117	125	102	114	140	176	132	155	142	131	78	56	38	17	
ł	1	2	0	2	4	7	20	48	70	41	33	34	30	22	28	34	38	37	40	43	19	17	18	5	5
	1	2	0	3	7	7	29	62	66	37	33	30	30	31	35	34	31	49	35	35	20	14	8	4	3
Ļ	1	1	1	0	7	15	35	71	57	34	24	24	18	30	41	64	31	35	38	29	24	14	5	4	0
	2	3	2	3	4	15	41	69	63	32	27	37	24	31	36	44	32	34	29	24	15	11	7	4	2
	AM Pos	sk 073	0 - 083	10 (276		PHF=0	97 PM	/ Posk	1515	- 1615	(180)	PM P	{F=0.7	٥											

AM Peak 0730 - 0830 (276), AM PHF=0.97 PM Peak 1515 - 1615 (180), PM PHF=0.70

* Wednesday, September 23, 2009 - Total=2477, 15 minute drops

<i>'</i>	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
	10	5	6	11	21	37	105	254	237	178	115	130	120	157	137	141	132	190	166	137	62	78	30	18	
1	5	2	0	3	2	5	16	46	65	57	38	32	29	47	34	32	29	49	48	46	25	18	10	7	3
	3	1	2	0	4	4	18	63	59	48	27	32	32	36	35	45	40	47	40	38	11	30	8	5	2
	0	0	3	1	8	17	31	73	55	34	24	30	23	41	39	33	33	48	42	30	18	12	5	4	0
	2	2	1	7	7	11	40	72	58	39	26	36	36	33	29	31	30	46	36	23_	8	18	7	2	0
									4300	4000	(•											

AM Peak 0715 - 0815 (273), AM PHF=0.93 PM Peak 1700 - 1800 (190), PM PHF=0.97

* Thursday, September 24, 2009 - Total=2404, 15 minute drops

0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
5	6	7	8	17	42	116	249	224	132	113	117	109	111	146	158	155	178	156	140	100	56	38	21	
3	1	1	1	2	6	17	48	63	41	33	33	26	24	32	29	46	35	50	35	34	19	10	3	6
2	2	2	1	4	13	27	52	48	34	30	37	28	29	36	38	49	41	38	32	22	16	10	8	5
0	2	3	2	3	7	33	77	59	30	22	19	28	29	27	45	35	42	30	38	25	12	10	6	2
0	1	1	4	8	16	39	72	54	27	28	28	27	29	51	46	25	60	38	35	19	9	8	4	3
ARE D.	1.074	- 004	E /004			00 08	4 D I	4745	4045	(40.2)	D34 D1	15-0.0	•											

ø

AM Peak 0715 - 0815 (264), AM PHF=0.86 PM Peak 1715 - 1815 (193), PM PHF=0.80

Traffic Data Service Vehicle Counts

VehicleCount-2022 -- English (ENU)

000

)

100

Datasets:	
Site:	[2E] EB D ST W/O MAUD AVE
Direction:	6 - West bound A>B, East bound B>A., Lane: 0
Included classes:	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Speed range:	5 - 100 mph.
Direction:	East (bound)
Separation:	All - (Headway)
Name:	Factory default profile
Scheme:	Vehicle classification (Scheme F)
Units:	Non metric (ft, mi, ft/s, mph, lb, ton)

* Tuesday, September 15, 2009 - Total=2668, 15 minute drops

0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
13	16	12	8	6	11	48	148	141	96	84	120	124	134	168	179	219	323	205	239	133	117	72	52	
4	4	3	2	3	3	6	28	41	29	23	32	31	33	27	47	54	68	55	51	44	30	19	16	8
3	3	4	4	0	1	3	15	44	26	22	40	33	33	43	37	57	74	53	65	27	49	20	15	12
2	3	2	1	2	3	18	44	33	17	22	20	26	34	44	44	53	88	45	67	29	18	17	15	4
4	6	3	1	1	4	21	61	23	24	17	28	34	34	54	51	55	93	52	56	33	20	16	6	5
ALL Do	ak 072	0 002	0 (400	1 ASA 6	อนธุ…ก	70 DB	A Dook	1700	1900	(222)	DRA DL	10-0 0.	7											

AM Peak 0730 - 0830 (190), AM PHF=0.78 PM Peak 1700 - 1800 (323), PM PHF=0.87

* Wednesday, September 16, 2009 - Total=2732, 15 minute drops

7	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
	29	13	11	8	6	14	41	140	165	95	87	116	134	158	169	185	217	271	250	211	161	117	89	45	
}	8	5	3	1	3	2	3	21	45	17	20	30	28	42	31	41	47	72	65	48	48	27	27	17	7
	12	1	4	2	1	4	12	28	51	29	22	31	38	41	31	49	38	60	66	65	45	40	19	10	14
)	4	3	1	3	2	3	6	47	37	30	18	22	30	35	43	44	62	77	48	57	30	29	24	11	6
	5	4	3	2	0	5	20	44	32	19	27	33	38	40	64	51	70	62	71	41	38	21	19	7	4
	414 D.	1. 073/	0 002	0 /407		0	02 08	8 Deel	. 40 AE	4745	(970)	DEE DL	10-0 0/	4											

AM Peak 0730 - 0830 (187), AM PHF=0.92 PM Peak 1645 - 1745 (279), PM PHF=0.91

* Thursday, September 17, 2009 - Total=2773, 15 minute drops

0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
31	13	15	7	6	18	46	120	169	102	88	113	125	156	193	200	229	266	226	202	194	96	97	61	
7	4	6	2	3	4	6	29	41	34	21	33	41	24	33	55	52	57	49	62	44	33	26	26	3
14	3	6	2	1	4	10	18	57	19	23	26	27	44	39	39	50	76	59	55	54	22	32	11	7
6	5	1	3	2	3	11	28	36	25	19	24	29	46	58	52	65	66	67	36	53	22	24	11	12
4	1	2	0	0	7	19	45	35	24	25	30	28	42	63	54	62	67	51	49	43	19	15	13	2

AM Peak 0745 - 0845 (179), AM PHF=0.79 PM Peak 1700 - 1800 (266), PM PHF=0.88

Traffic Data Service Event Counts

EventCount-2023 -- English (ENU)

ì 1

) -))

)))

ł

大田 ARTS) ł

Datasets:	
Site:	[3N] NB MAUD AVE N/O D ST
Input A:	1 - North bound Added to totals. (1)
Input B:	3 - South bound Excluded from totals. (0)
Name:	Factory default profile
Scheme:	Count events divided by two.
Units:	Non metric (ft, mi, ft/s, mph, lb, ton)

* Tuesday, September 22, 2009=2897, 15 minute drops

)	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
	26	5	5	8	17	22	100	254	212	133	99	139	147	114	186	213	214	269	232	182	124	90	62	44	
)	13	3	2	1	2	6	14	37	65	38	29	40	43	30	38	47	59	56	73	62	23	23	15	15	9
	6	0	3	2	6	1	25	57	58	33	34	33	41	23	47	43	53	76	58	44	37	18	20	14	7
}	3	0	0	2	6	8	25	77	43	29	14	23	35	29	54	74	61	78	54	42	35	31	16	10	3
7	4	2	0	3	3	7	36	83	46	33	22	43	28	32	47	49	41	59	47	34	29	18	11	5	5
\ \	AM Pea	ak 073	0 - 083	0 (283), AM I	PHF=0	.85 PM	I Peak	1715	- 1815	(286).	PM PH	iF=0.9	2											

* Wednesday, September 23, 2009=3182, 15 minute drops

r	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
	24	11	7	8	13	27	105	272	224	144	124	151	170	183	160	198	213	284	314	197	113	140	58	42	
3	9	4	2	1	2	4	17	43	57	40	34	38	50	51	33	48	49	65	68	53	33	28	24	14	6
	7	2	2	2	2	6	20	58	64	41	26	45	36	42	36	44	61	62	88	46	38	51	9	12	4
)	3	2	2	2	3	9	26	77	52	30	29	27	44	42	46	48	54	76	81	52	25	35	11	6	4
	5	3	1	3	6	8	42	94	51	33	35	41	40	48	45	58	49	81	77	46	17	26	14	10	5
۱.	AM Do	L 073	0 . 083	0 (202	A 67 1	החברט	79 D8	I Dook	1745	- 1845	(218)	DM DI	15-0 0	n –											

AM Peak 0730 - 0830 (292), AM PHF=0.78 PM Peak 1745 - 1845 (318), PM PHF=0.90

* Thursday, September 24, 2009=3038, 15 minute drops

	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
à	19	14	5	6	12	33	101	244	205	106	133	158	131	126	190	220	232	273	238	172	162	142	75	41	
1	6	4	1	1	0	7	17	42	54	34	34	37	40	34	37	47	61	49	62	49	52	38	18	14	6
`	4	3	0	3	5	11	24	45	42	25	37	47	38	30	44	54	66	70	56	54	48	42	28	11	10
3	4	2	2	1	2	4	22	82	52	28	32	29	34	29	55	53	50	84	57	41	37	39	19	12	3
	5	5	2	1	5	11	38	75	57	19	30	45	19	33	54	66	55	70	63	28	25	23	10	4	5
3										4045	(-	-											

AM Peak 0715 - 0815 (256), AM PHF=0.78 PM Peak 1715 - 1815 (286), PM PHF=0.85

10

Appendix D – Level of Service Worksheets: Existing Conditions (Scenario I)

	_#		4	٤	6	1
Movement	EBL	EBT	WBT	WBR	SWL	SWR
Lane Configurations	5	Â.	4		N.	
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Volume (veh/h)	26	244	280	2	4	42
Peak Hour Factor	0.81	0.81	0.86	0.86	0.77	0.77
Hourly flow rate (vph)	32	301	326	2	5	55
Pedestrians	- 1 21-12-52 X 1 - 1	20	20		20	
Lane Width (ft)		11.5	12.0		12.0	
Walking Speed (ft/s)		4.0	4.0		4.0	nersensensering som bere
Percent Blockage		2	2		2	
Right turn flare (veh)			an a san an ganganan			
Median type					None	
Median storage veh)				ti secolo (ce secolo	lei Situnieleitoitoitoitoito	
Upstream signal (ft)						
pX, platoon unblocked			- (-World House Controls	n en de la desentación	
vC, conflicting volume	348				732	367
vC1, stage 1 conf vol		(1997-11-2001-304 - 2004-30		over exploration and an an	of control of the second
vC2, stage 2 conf vol						
vCu, unblocked vol	348	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	- , 1991 - 1990 - 1997 - 1997 - 1997		732	367
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	97				99	92
cM capacity (veh/h)	1191				365	657
Direction, Lane #	EB 1	EB 2	WB 1	SW 1		
Volume Total	32	301	328	60		
Volume Left	32	0	0	5		
Volume Right	0	0	2	55		
cSH	1191	1700	1700	614	at a statistical descentioned	
Volume to Capacity	0.03	0.18	0.19	0.10		
Queue Length 95th (ft)	2	0	0	8		
Control Delay (s)	8.1	0.0	0.0	11.5		
Lane LOS	А			В		
Approach Delay (s)	0.8		0.0	11.5		
Approach LOS				В		
Intersection Summary						
Average Delay			1.3			
Intersection Capacity UI	tilization		37.0%	1	CU Lev	el of Ser
Analysis Period (min)	9205-9227-92 <i>9</i> 46572-923		15			
			Managaran			

))) 1

1

		\mathbf{i}	1	4	٩	M	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ţ.			ર્સ	K.A		
Sign Control	Free			Free	Yield		
Grade	0%	- 	- -	0%	10%		en noorde felenation felenation of the second s A second
Volume (veh/h)	105	0	0	177	5	5	
Peak Hour Factor	0.75	0.75	0.74	0.74	0.33	0.33	
Hourly flow rate (vph)	140	0	0	239	15	15	
Pedestrians	10			10	10		
Lane Width (ft)	12.0			12.0	12.0		
Walking Speed (ft/s)	4.0			4.0	4.0		
Percent Blockage	1						
Right turn flare (veh)							
Median type					None		
Median storage veh)					80.71 6.7126 .67.18		
Upstream signal (ft)							
pX, platoon unblocked				an di Katalan di			
vC, conflicting volume			150		399	160	
vC1, stage 1 conf vol					2 - 17 N. Rosson, T. 47	99977 <u>897</u> 8263888	
vC2, stage 2 conf vol							
vCu, unblocked vol			150		399	160	
tC, single (s)	na an a		4.1		6.4	6.2	
tC, 2 stage (s)					e de la competition d La competition de la c		
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		97	98	
cM capacity (veh/h)			1419		595	870	
	EB 1	WB 1	NB 1				
Direction, Lane #	140	239	30				
Volume Left	0	200	15				
Volume Right	0	0	15		a de la com		
cSH	1700	1419	707				
Volume to Capacity	0.08	0.00	0.04				
Queue Length 95th (ft)	0.00	0.00	3		-		
Control Delay (s)	0.0	0.0	10.3				
Lane LOS	0.0	0.0	10.5 B				
Approach Delay (s)	0.0	0.0	10.3				
Approach LOS	0.0	0.0	B				
Intersection Summary							
Average Delay			0.8				
Intersection Capacity U	tilization		22.2%	CANE O	CU Lev	el of Servi	ice A
Analysis Period (min)			15		Constant Strategy (1997)		
				and SARES			

ø

DETAILED OUTPUT

Fairview Avenue/Five Canyon Parkway/Star Ridge Road Existing Conditions: AM Peak Roundabout

Roundabouts

à

Roundabout Basic Parameters Site:New Site - 1

Intersection	ID:	5
Roundabout		

								ating/E			
Island Diam ft	Width ft	Diam. ft	Circ. Lanes	Entr Lane	f Av.Ent y Lane s Width ft	Flow veh/h	%HV	Adjust. Flow pcu/h	%Exit Incl.	Cap. Constr. Effect	O-D Factor
South: Envi: 68	Fairv: ronmen 16	iew Ave t Facto 100	enue or: 1.2 1	20 1	Entry/Ci: 12.00	rculati 79	ng Flo 2.0	w Adjus 80	tment: 0	Medium N	0.996
East: Envir	Five Ca ronmen	anyons t Facto	Road or: 1.2	20	Entry/Ci: 13.00	rculati 69	ng Flo 2.0	w Adjus 71	tment: 0	Medium N	0.996
68	ronmen 16	t Facto 100	enue or: 1.2 1	20 1	Entry/Ci 11.00	rculati 114	ng Flo 2.0	w Adjus 116	tment: 0	Medium N	0.993.
West: S Envi:	Star R ronmen	idge Ro t Facto	oad or: 1.2	20	Entry/Ci 12.00	rculati	ng Flo	w Adjus	tment:	Medium	
Round	dabout	Capac	itv Mo	del:	SIDRA St	andard					

Roundabout Gap Acceptance Parameters Site:New Site - 1

Intersection ID: 5 Roundabout

		Circulating/Exiting Stream Flow Aver Aver In-Bnch Prop					Critical Gap		
No. T			Dist H	leadway	Bunched	Hdwy	Dist	Foll-up Headway sec	
South: Fairvi Environment Left 1 Domin Thru 1 Domin Right 1 Domin	Factor: 2 ant 8 ant 8	30 15.4 30 15.4	1013.5 1013.5	2.00 2.00	0.093 0.093	6.10 6.22	138.0 140.5	3.04	
East: Five Ca Environment Left 1 Domin Thru 1 Domin Right 1 Domin	Factor: 1 ant ant	1.20 Ent 71 19.2 71 19.2	1435.7 1435.7	2.00 2.00	0.082 0.082	5.81 5.80	163.4 163.1	2.98	
North: Fairvi Environment Left 1 Domin Thru 1 Domin Right 1 Domin	Factor: ant 1 ant 1	16 14.0 16 14.0	636.2 636.2	2.00 2.00	0.132	6.83 6.83	140.2		

West: Star Ridge Road

ø

4R R	7	2.0	114	2.0	116	64	0.85	631	100	0.116
West: Star 5L L 2T T 2R R	16	2.0 2.0	207	2.0 2.0 2.0	212 212 212	388	0.85 0.85 0.85	1622	100	0.049 0.049 0.049

* Maximum degree of saturation

Lanes

)

ì

Lane Performance Site:New Site - 1

Intersection ID: 5 Roundabout

	Flow	Cap	Deg.	Aver.	Eff.	Que 95%E		Lane
Lane No.	veh/h	veh/h	Satn x	Delay sec	-	veh		Length ft
South: F 1 LTR				6.3	0.51	1.3	32.9	500.0
East: Fi 1 LTR	-	•		9.0	0.60	1.4	35.6	500.0
North: F 1 LTR				7.1	0.53	0.8	20.8	500.0
West: St 1 LTR		-		6.7	0.56	0.3	7.8	500.0

Lane Flow and Capacity Information Site:New Site - 1

Intersection ID: 5 Roundabout

Lane No.	Dem Lef 1					Tot Cap veh/h	Satn	
South	Fairvi	ew A	venue					
					150	1063	0.181	100
East.	Five Ca	nvon	s Roa	 d				
		-			150	1104	0.202	100
North	Fairvi	A	Venue					
					110	948	0.116	100
West.	Star Ri	i dae	Boad					
1 LTR				43	43	862	0.049	100

The capacity value for priority and continuous movements is obtained by adjusting the basic saturation flow for heavy vehicle and turning vehicle effects. Saturation flow scale applies if specified.

Flow Rates and Demand Analysis

Movement Definitions and Flow Rates (O-D)

Intersection ID: 5 Roundabout

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total %HV Total %HV Total %HV Total %HV Total %HV Total %HV Total %HV Total %HV emand flows in veh/h as used by the program Douth: Fairview Avenue Douth: Fairview Avenue 3L L 2 2.0 0 0.0 0 3T T 0 0.0 51 2.0 0 0.0 8R R 0 0.0 0 0.0 139 2.0 ast: Five Canyons Road 1 105 2.0 0 0.0 0 0.0 6R R 0 0.0 0 0.0 112 2.0 orth: Fairview Avenue 7 L 44 2.0 0 0.0 0 0.0	Mov ID	Lef	t	Throu			nt
Demand flows in veh/h as used by the program South: Fairview Avenue 3L L 2 2.0 0 0.0 0 8T T 0 0.0 51 2.0 0 0.0 8R R 0 0.0 0 0.0 139 2. East: Five Canyons Road 1L L 105 2.0 0 0.0 0 0. 6T T 0 0.0 6 2.0 0 0. 6R R 0 0.0 0 0.0 112 2. North: Fairview Avenue 7L L 44 2.0 0 0.0 0. 4R R 0 0.0 0 0. 7 2.	emand flows in veh/h as used by the program JL 2 2.0 0 0.0 0.0 BT 0 0.0 51 2.0 0 0.0 BT 0 0.0 51 2.0 0 0.0 BR 0 0.0 0 0.0 139 2.0 ast: Five Canyons Road 1 1 105 2.0 0 0.0 0 0.0 GT 0 0.0 6 2.0 0 0.0 0.0 0 0.0 GT 0 0.0 6 2.0 0 0.0 0 0.0 GT 0 0.0 0 0.0 0 0.0 0.0 0.0 GT 44 2.0 0 0.0 0 0.0 0.0 0.0 4T 0 0.0 59 2.0 0 0.0 0.0 0.0 4R 0 0.0 0 0.0 0 0.0 0.0 0.0 StL 16 2.0 <	ID	Total	%HV	Total	%HV	Total	%HV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3L L 2 2.0 0 0.0 0 0.0 $8T$ T 0 0.0 51 2.0 0 0.0 $8R$ R 0 0.0 0 0.0 139 2.0 $ast:$ Five Canyons Road 1 105 2.0 0 0.0 0 0.0 $6T$ T 0 0.0 6 2.0 0 0.0 0 0.0 $6R$ R 0 0.0 0 0.0 112 2.0 0 Corth: Fairview Avenue 7 1 44 2.0 0 0.0 0 0.0 $4T$ T 0 0.0 59 2.0 0 0.0 0.0 $4R$ R 0 0.0 0 0.0 7 2.0 $est:$ Star Ridge Road 5 5 1.6 2.0 0 0.0 0 0.0 $2T$ T 0 0.0 19 2.0 0 0.0 0 0.0 $2R$ R 0 0.0 0 0.0 7 2.0							
8T T 0 0.0 51 2.0 0 0. 8R R 0 0.0 0 0.0 139 2. ast: Five Canyons Road 1 1 105 2.0 0 0.0 0 0. 1L L 105 2.0 0 0.0 0 0. 0. 6T T 0 0.0 6 2.0 0 0. 6 2.0 0 0. 6R R 0 0.0 0 0.0 112 2. 0 0.0 112 2. orth: Fairview Avenue 7L L 44 2.0 0 0.0 0 0. 4T T 0 0.0 59 2.0 0 0. 4R R 0 0.0 0 0.0 7 2.	8T T 0 0.0 51 2.0 0 0.0 $8R R$ 0 0.0 0 0.0 139 2.0 $ast:$ Five Canyons Road 1 11 L 105 2.0 0 0.0 0 0.0 $6T T$ 0 0.0 6 2.0 0 0.0 0 0.0 $6R R$ 0 0.0 0 0.0 112 2.0 $orth:$ Fairview Avenue 7 L 44 2.0 0 0.0 0 0.0 $4T T$ 0 0.0 59 2.0 0 0.0 0 0.0 $4R R$ 0 0.0 0 0.0 7 2.0 est: Star Ridge Road 5 5 L 16 2.0 0 0.0 2T T 0 0.0 19 2.0 0 0.0 2.0 2R R 0 0.0 0 0.0 7 2.0				0	0.0	0	0.0
8R R 0 0.0 0 0.0 139 2. East: Five Canyons Road 1L L 105 2.0 0 0.0 0 0.0 6T T 0 0.0 6 2.0 0 0.0 0.0 6R R 0 0.0 0 0.0 112 2. North: Fairview Avenue 7L L 44 2.0 0 0.0 0 0. 4T T 0 0.0 59 2.0 0 0. 4R R 0 0.0 0 0.0 7 2.	8R R 0 0.0 0 0.0 139 2.0 $ast:$ Five Canyons Road 1L L 105 2.0 0 0.0 0 0.0 $6T$ T 0 0.0 6 2.0 0 0.0 0 0.0 $6T$ T 0 0.0 6 2.0 0 0.0 0.0 $6R$ R 0 0.0 0 0.0 112 2.0 $orth:$ Fairview Avenue 7 2.0 0 0.0 0 0.0 $4T$ T 0 0.0 59 2.0 0 0.0 $4R$ R 0 0.0 0 0.0 7 2.0 $est:$ Star Ridge Road 5L L 16 2.0 0 0.0 0 0.0 $2R$ R 0 0.0 0 0.0 7 2.0 0 0.0							
Cast: Five Canyons Road 1L L 105 2.0 0 0.0 0 6T T 0 0.0 6 2.0 0 0.0 6R R 0 0.0 0 0.0 112 2. North: Fairview Avenue 7L L 44 2.0 0 0.0 0 0. 4T T 0 0.0 59 2.0 0 0. 4R R 0 0.0 0.0 7 2.	ast: Five Canyons Road 1L L 105 2.0 0 0.0 0 0.0 6T T 0 0.0 6 2.0 0 0.0 6R R 0 0.0 0 0.0 112 2.0 orth: Fairview Avenue 7 1 44 2.0 0 0.0 0 0.0 4T T 0 0.0 59 2.0 0 0.0 4R R 0 0.0 0 0.0 7 2.0 est: Star Ridge Road 5 16 2.0 0 0.0 0 0.0 2T T 0 0.0 19 2.0 0 0.0 2.0 2R R 0 0.0 0 0.0 7 2.0	8R R	0	0.0	0	0.0	139	
6T T 0 0.0 6 2.0 0 0. 6R R 0 0.0 0 0.0 112 2. North: Fairview Avenue 7L L 44 2.0 0 0.0 0 0. 4T T 0 0.0 59 2.0 0 0. 4R R 0 0.0 0 0.0 7 2.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
6R R 0 0.0 0 0.0 112 2. North: Fairview Avenue 7L L 44 2.0 0 0.0 0 0. 4T T 0 0.0 59 2.0 0 0. 4R R 0 0.0 0 0.0 7 2.	6R R 0 0.0 0 0.0 112 2.0 orth: Fairview Avenue 7L L 44 2.0 0 0.0 0 0.0 4T T 0 0.0 59 2.0 0 0.0 4R R 0 0.0 0 0.0 7 2.0 est: Star Ridge Road 5 L 16 2.0 0 0.0 2T T 0 0.0 19 2.0 0 0.0 2R R 0 0.0 0 0.0 7 2.0							
North: Fairview Avenue 7L L 44 2.0 0 0.0 0 0 4T T 0 0.0 59 2.0 0 0. 4R R 0 0.0 0 0.0 7 2.	orth: Fairview Avenue 7L L 44 2.0 0 0.0 0 0.4 4T T 0 0.0 59 2.0 0 0.4 4R R 0 0.0 0 0.0 7 2.4 est: Star Ridge Road 5 16 2.0 0 0.4 2T T 0 0.0 19 2.0 0 0.4 2R R 0 0.0 0 0.0 7 2.4							
7L 44 2.0 0 0.0 0 0. 4T T 0 0.0 59 2.0 0 0. 4R R 0 0.0 0 0.0 7 2.	7L L 44 2.0 0 0.0 0 0.0 4T T 0 0.0 59 2.0 0 0.0 4R R 0 0.0 0 0.0 7 2.0 est: Star Ridge Road 5 16 2.0 0 0.0 0 0.0 2T T 0 0.0 19 2.0 0 0.0 2R R 0 0.0 0 0.0 7 2.0	6R R	0	0.0	0	0.0	112	2.0
4T T 0 0.0 59 2.0 0 0. 4R R 0 0.0 0 0.0 7 2.	4T T 0 0.0 59 2.0 0 0.0 4R R 0 0.0 0 0.0 7 2.0 est: Star Ridge Road 5L L 16 2.0 0 0.0 0 0.0 2T T 0 0.0 19 2.0 0 0.0 2R R 0 0.0 0 0.0 7 2.0	North: Fai	rview Av	enue				
4R R 0 0.0 0 0.0 7 2.	4R R 0 0.0 0 0.0 7 2.0 est: Star Ridge Road 5L L 16 2.0 0 0.0 0 0.0 2T T 0 0.0 19 2.0 0 0.0 2R R 0 0.0 0 0.0 7 2.0							
	est: Star Ridge Road 5L L 16 2.0 0 0.0 0 0.0 2T T 0 0.0 19 2.0 0 0.0 2R R 0 0.0 0 0.0 7 2.0	A						
West: Star Ridge Road	5L L 16 2.0 0 0.0 0 0.0 2T T 0 0.0 19 2.0 0 0.0 2R R 0 0.0 0 0.0 7 2.0	4R R	0	0.0	0	0.0	7	2.0
	2T T 0 0.0 19 2.0 0 0.0 2R R 0 0.0 0 0.0 7 2.0							
	2R R 0 0.0 0 0.0 7 2.0							
2R R 0 0.0 0 0.0 7 2.	nit Time for Volumes = 60 minutes	2R R	0	0.0	0	0.0	1	2.0
Peak Flow Period = 15 minutes		LOGIN LEON			ts of Fl			

))))))))

> Model Settings Site:New Site - 1

Intersection ID: 5 Roundabout

* Basic Parameters: Intersection Type: Roundabout Driving on the right-hand side of the road Input data specified in US units Model Defaults: US HCM (US) Peak Flow Period (for performance): 15 minutes Unit time (for volumes): 60 minutes. HCM Delay Model option selected HCM Queue Model option selected Level of Service based on: Delay (HCM method) Queue percentile: 95%

Diagnostics Site:New Site - 1

 Processed: Friday, November 06, 2009 3:21:57 PM
 Copyright ©2000-2009 Akcelik & Associates Pty Ltd

 SIDRA INTERSECTION 4.0.12.1029
 www.sidrasolutions.com

 Project:
 C:\Documents and Settings\sdelsid\My Documents\Projects\014-132 Alameda County - Roundabout

 \Existing AM.sip
 8000779, TJKM TRANSPORTATION CONSULTANTS, SINGLE

÷,

	٭		4	×.	1	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		ર્લ	¢	7	15	7		
Sign Control		Stop	Stop		Stop			
Volume (vph)	172	149	93	126	137	119		
Peak Hour Factor	0.89	0.89	0.83	0.83	0.90	0.90		
Hourly flow rate (vph)	193	167	112	152	152	132	2429-4409-4429-579988-2624, 14099829-40029489	920029
Direction, Lane #	EB 1	WB 1	WB 2	SB 1	SB 2			
Volume Total (vph)	361	112	152	152	132			
Volume Left (vph)	193	0	Ó	152	0			
Volume Right (vph)	0	0	152	0	132			and of the second s
Hadj (s)	0.14	0.03	-0.57	0.23	-0.57			
Departure Headway (s)	4.6	4.8	3.2	5.3	3.2			951 20 CM
Degree Utilization, x	0.46	0.15	0.13	0.22	0.12			
Capacity (veh/h)	759	709	1121	636	1121			
Control Delay (s)	11.5	8.6	6.7	9.8	6.6			
Approach Delay (s)	11.5	7.5	101 - HINDER HERE DE DE MARTINE	8.3	n an		 	
Approach LOS	В	Α		Α				
Intersection Summary								
Delay			9.3					
HCM Level of Service			Α					
Intersection Capacity Ut	ilizatior	1	41.1%	I	CU Leve	el of Service	Α	
Analysis Period (min)			15					

.

	4	×.	t	p	\$	ł			
Movement	WBL	WBR	NBT	NBR	SBL	SBT	a contra		
Lane Configurations	¥.4		ĥ			¢Ĵ			
Sign Control	Stop		Free			Free			
Grade	0%		0%			0%			
Volume (veh/h)	0	5	103	0	6	157			
Peak Hour Factor	0.63	0.63	0.89	0.89	0.91	0.91			
Hourly flow rate (vph)	0	8	116	0	7	173			
Pedestrians	10		10			10	andar na shikaka dheyadi ana ay		
Lane Width (ft)	12.0		12.0			12.0			
Walking Speed (ft/s)	4.0		4.0			4.0		Devol Avera	
Percent Blockage	1		1			1			
Right turn flare (veh)									
Median type	None								
Median storage veh)	C. C. LESS, C. MINERAL CO. C.								
Upstream signal (ft)									
pX, platoon unblocked		- 1929-19 Manufacture							
vC, conflicting volume	321	136			126				
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	321	136			126				
tC, single (s)	6.4	6.2			4.1				
tC, 2 stage (s)									
tF (s)	3.5	3.3			2.2				
p0 queue free %	100	99			100				
cM capacity (veh/h)	658	898			1449				
Direction, Lane #	WB 1	NB 1	SB 1						SHIRES SHIP
Volume Total	8	116	179						SUSSESS
Volume Left	0	0	7		and an				
Volume Right	8	0	0						
cSH	898	1700	1449						
Volume to Capacity	0.01	0.07	0.00						
Queue Length 95th (ft)	1	0	0						
Control Delay (s)	9.0	0.0	0.3						
Lane LOS	Α		А						
Approach Delay (s)	9.0	0.0	0.3						
Approach LOS	А								
Intersection Summary									
Average Delay			0.4						
Intersection Capacity U	tilization		26.0%	1	CU Lev	el of Serv	vice		
Analysis Period (min)	 Company and a second s		15		a a ga a na saga a na na saga na sa saga n	the second second second			

0

MOVEMENT SUMMARY

Fairview Avenue/Five Canyon Parkway/Star Ridge Road Existing Conditions: PM Peak Roundabout

5.0	ev ID	Tum Filler		HV Dep	Ave De	the second s	Wehickers	Chateure Chatance	Quesed	Effective Shop Rate	Aven
1540	with	Faithlese Aurestue		0.101	0.3	LUSA	1.3	33.3	0.36	0.69	19.7
8T	R.T.	55 7	2.0	0.182	3.9	LOSA	1.3	33.3	0.36	0.37	22.4
8R	R	114	2.0	0.182	7.7	LOS A	1.3	33.3	0.36	0.59	23.0
Approact	h	176	2.0	0.182	6.5	LOS A	1.3	33.3	0.36	0.52	22.7
East	Fi	e Canyons Road									
1L	L	151	2.0	0.214	11.0	LOS B	1.5	38.5	0.27	0.67	21.2
6T	Т	19	2.0	0.214	5.5	LOS A	1.5	38.5	0.27	0.39	23.9
6R	R	64	2.0	0.214	7.6	LOS A	1.5	38.5	0.27	0.56	23.3
Approact	h	233	2.0	0.214	9.6	LOS B	1.5	38.5	0.27	0.61	21.8
North	Fa	irview Avenue									
7L	L	86	2.0	0.183	12.0	LOS B	1.3	34.1	0.46	0.72	21.2
4T	Т	58	2.0	0.182	4.6	LOS A	1.3	34.1	0.46	0.44	21.5
4R	R	16	2.0	0.183	7.9	LOS A	1.3	34.1	0.46	0.67	19.9
Approact	h	160	2.0	0.183	8.9	LOS B	1.3	34.1	0.46	0.61	21.2
West	St	ar Ridge Road									
5L	L	14	2.0	0.042	9.9	LOS A	0.3	6.7	0.49	0.72	18.5
2T	٠T	16	2.0	0.042	4.9	LOS A	0.3	6.7	0.49	0.45	22.1
2R	R	2	2.0	0.042	8.5	LOS A	0.3	6.7	0.49	0.68	18.8
Approact	h	33	2.0	0.042	7.3	LOS A	0.3	6.7	0.49	0.58	20.2
All Vehic	les	602	2.0	0.214	8.4	LOS A	1.5	38.5	0.36	0.59	21.8

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (HCM).

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Roundabout LOS Method: Same as Signalised Intersections.

Roundabout Capacity Model: SIDRA Standard.

Processed: Friday, November 06, 2009 3:25:35 PM SIDRA INTERSECTION 4.0.12.1029 Copyright ©2000-2009 Akcelik & Associates Pty Ltd www.sidrasolutions.com SIDRA ---INTERSECTION

Project: C:\Documents and Settings\sdelsid\My Documents\Projects\014-132 Alameda County - Roundabout \Existing PM.sip

8000779, TJKM TRANSPORTATION CONSULTANTS, SINGLE

Left 1 Dom Thru 1 Dom Right 1 Dom	nt Factor: 1 Minant 30 Minant 30 Minant 30	0 15.1 0 15.1 0 15.1	264.9 2.0 264.9 2.0 264.9 2.0	0 0.306 0 0.306 0 0.306	6.17	136.1 3	8.13 8.13 8.07
Roundabou	t Capacity M	odel: SIDF	A Standard				
Dist (Dis			nicles acros				Ţ
Roundabout F Site:New Site	Pedestrian Effec - 1	#s					
Intersectio Roundabout	n ID: 5						
ROUNDABOUT	ENTRY						
Flow	trian Circu Rate Flow I	Rate	Factor				
East: Five	Canyons Road		0.999				
Thru Right	5 7 5 7 5 7	8 8	0.999 0.999				
		999 889 997 Add 980 880 989 989 9	n an an de an de de an an				
ROUNDABOUT	EXIT						
Flow Rate (ped/h)	Conflict Zone Length (ft)	Critical Gap (sec)	Follow-up Headway (sec)	Exit Lane Capacity (veh/h)	Total Exit Flow (veh/h)	Average w Exit Flow (veh/h/lar	v ne)
East: Five	Canyons Road		2.00				

Movements

Movement Capacity Parameters Site:New Site - 1

Intersection ID: 5 Roundabout

Mov ID	Demand Flow veh/h	HV ೪	Oppos Flow veh/h	ing M HV %	ovement Adjust. Flow pcu/h	Cap.	Prac. Deg. Satn xp	Prac. Spare Cap. %	Lane Util	Deg. Satn x
South:	Fairview	Avenue								
3L L	7	2.0	116	2.0	119	39	0.85	370	100	0.181
8T T	55	2.0	116	2.0	119	304	0.85	367	100	0.182
8R R	114	2.0	116	2.0	119	628	0.85	368	100	0.182
East: F	ive Canyo	ons Road	1 1							
1L L	151	2.0	76	2.0	78	704	0.85	297	100	0.214*
6т т	19	2.0	76	2.0	78	88	0.85	297	100	0.214*
6R R	64	2.0	76	2.0	78	297	0.85	297	100	0.214*
North:	Fairview	Avenue								
7L L	86	2.0	176	2.0	180	470	0.85	365	100	0.183
4T T	58	2.0	176	2.0	180	316	0.85	366	100	0.182

))))))))

)

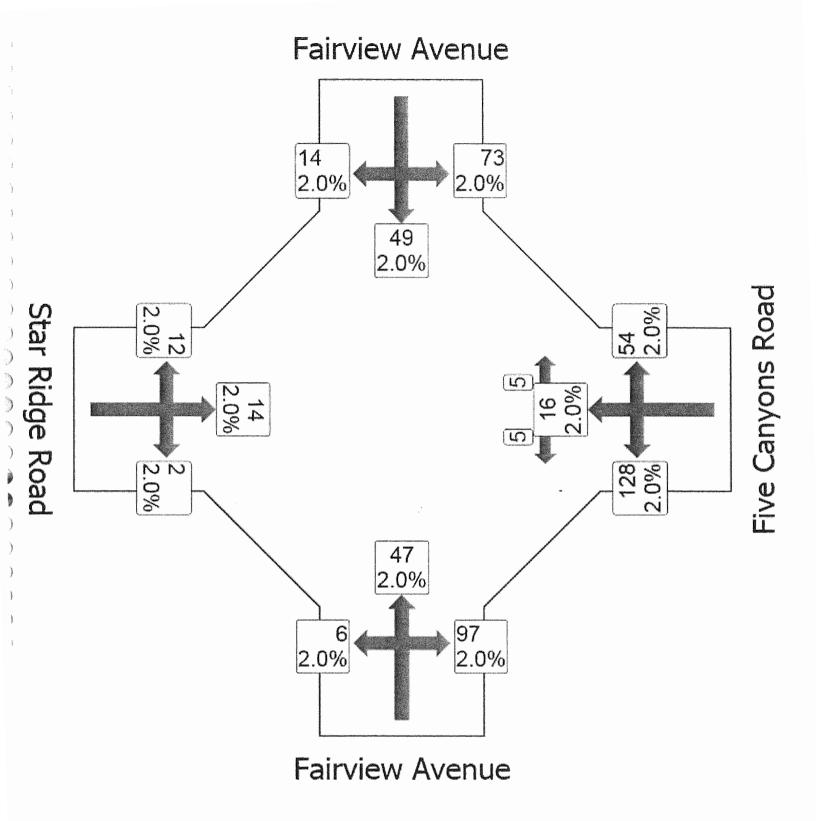
)

)

Intersection ID: 5 Roundabout

From	То	Mov						Peak Flo
Approach	Approach	ID	Turn	LV	HV	Fixed	Var	Factor
South: Fa	irview Aven	ue						
	East	8R	Right	112	2	1.00	1.00	0.85
	North	8 T	Thru	54	1	1.00	1.00	0.85
	West	3L	Left	7	0	1.00	1.00	0.85
East: Fiv	e Canyons R	oad						
	South	1L	Left	148	3	1.00	1.00	0.85
	North	6R	Right	62	1	1.00	1.00	0.85
	West	6т	Thru	18	0	1.00	1.00	0.85
North: Fa	irview Aven	ue						
	South	4T	Thru	56	1	1.00	1.00	0.85
	East	7L	Left	84	2	1.00	1.00	0.85
	West	4R	Right	16	0	1.00	1.00	0.8
West: Sta	r Ridge Roa	 d						
West: Sta	r Ridge Roa South	d 2R	Right	2	0	1.00	1.00	0.8
West: Sta	3		Right Thru		0 0	1.00		

Peak Flow Period = 15 minutes


Flow Rates include effects of Flow Scale and Peak Flow Factor

Flow Rates (Separate Light and Heavy Vehicles) Site New Site - 1

Intersection ID: 5 Roundabout

Mov ID	Le	ft	Thro	ough	Right	t
10	LV	HV	LV	HV	LV	нv
Demand flow South: Fair			used	by th	e program	
3L L	view F 7	o o	0	0	0	0
8T T	Ó	•	54	ĩ	0	0
	0	0	0	0	112	2
East: Five	Canyor	is Road				
1L L	148	3	0	0	0	0
6T T	0	0	18	0	0	0
6R R	0	0	0	0	62	1
North: Fair	view A	venue				
7L L		2	0	0	0	0
4T T	-	-	56	1	0	0
4R R	0	0	0	0	16	0
West: Star	Ridge	Road				
5L L	14	0	0	0	0	0
2т т	0	0	16	0	0	0
2R R	0	0	0	0	2	0
Unit Time f	or Vol	umes =	60 m:	inutes	3	
Peak Flow F	eriod	= 15 m	inutes	S		
Flow Rates	includ	le effec	ts of	Flow	Scale and	Pe

Flow Factor

	>		-	<.	\	-			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations		ର୍ଣ	ŧ	7	*	7			
Sign Control		Stop	Stop		Stop				
Volume (vph)	101	96	186	193	190	181			
Peak Hour Factor	0.83	0.83	0.86	0.86	0.86	0.86			
Hourly flow rate (vph)	122	116	216	224	221	210			
Direction, Lane #	EB 1	WB 1	WB 2	SB 1	SB 2				
Volume Total (vph)	237	216	224	221	210				
Volume Left (vph)	122	0	Ó	221	Ö				
Volume Right (vph)	0	0	224	0	210	an a luna con dun a stand por catalogna a sec			
Hadj (s)	0.14	0.03	-0.57	0.23	-0.57				
Departure Headway (s)	4.9	4.9	3.2	5.3	3.2				
Degree Utilization, x	0.33	0.29	0.20	0.32	0.19				
Capacity (veh/h)	694	699	1121	643	1121		and and the second		
Control Delay (s)	10.3	9.9	7.0	10.7	6.9				
Approach Delay (s)	10.3	8.4		8.9					
Approach LOS	В	Α		A					
Intersection Summary									
Delay			9.0						
HCM Level of Service			Α						
Intersection Capacity Util	lization		44.7%		CU Leve	of Service		Α	
Analysis Period (min)	-		15						

	*	×.	Ť	p	1	Ł				
Movement	WBL	WBR	NBT	NBR	SBL	SBT				1. A. S.
Lane Configurations	¥.		ĵ.			র্ম				
Sign Control	Stop		Free			Free				
Grade	15%	A server independent som	0%		: :	0%				
Volume (veh/h)	0	18	214	0	7	105				
Peak Hour Factor	0.50	0.50	0.75	0.75	0.59	0.59				(49) (689-62) -
Hourly flow rate (vph)	Ó	36	285	0	12	178				
Pedestrians	15		15			15			olen - Suddanskouletskie	
Lane Width (ft)	12.0		12.0			12.0				
Walking Speed (ft/s)	4.0	en bezze keldet zur ein	4.0			4.0				
Percent Blockage			1			1				
Right turn flare (veh)			n en annaitheadhad		an a					
Median type	None									
Median storage veh)	en et availlet te			an saine a that a fille fi		and a chair an ann an				1999 (1999 (1999) 1999 (1999 (1999)
Upstream signal (ft)										
pX, platoon unblocked					0210129199900222222222	na na angla na na mga ng mga na na n				10494523496010
vC, conflicting volume	517	315			300					
vC1, stage 1 conf vol		n a lacat silent Strikter			990019799-9409202-0	angar keringan panyangkan dia.				
vC2, stage 2 conf vol										
vCu, unblocked vol	517	315		n de la marca d	300	and an operation of the Print of	A Construction and a Second stand of our second state			\$110,40,800,000 A
tC, single (s)	6.4	6.2			4.1					
tC, 2 stage (s)	(ana fi berayar)ara (af)	an chinada karakara	r bebereken oprosisionelegi	ales est a strandard de la com		1999 - 1999 -	n lande en de la substation production de la substation de la substation de la substation de la substation de l	 Definition construction 	CANESS AN TOLCOLOGIES OF	Real Property of the
tF (s)	3.5	3.3			2.2					
p0 queue free %	100	95		A LANCE AND ADDRESS OF ADDRESS ADDRESS	99	anganta muloka dagan dilametra di d	fi olifek nek fottalan ita minanan perinten karan dipatan	119-11-120 (MA) 120-120-120-120-120-120-120-120-120-120-		NUMBER OF STREET
cM capacity (veh/h)	499	706			1245					
Direction, Lane #	WB 1	NB 1	SB 1							
Volume Total	36	285	190							
Volume Left	0	0	12			and the second se				
Volume Right	36	Ó	0							
cSH	706	1700	1245							
Volume to Capacity	0.05	0.17	0.01							
Queue Length 95th (ft)	4	0	1							
Control Delay (s)	10.4	0.0	0.6							
Lane LOS	В		А							
Approach Delay (s)	10.4	0,0	0.6							
Approach LOS	В									
Intersection Summary										
Average Delay			0.9							
Intersection Capacity U	tilization		26.0%	- 10	CU Leve	el of Serv	ice	Α		
Analysis Period (min)			15						a construction of the second second	

MOVEMENT SUMMARY

Fairview Avenue/Five Canyon Parkway/Star Ridge Road Existing plus Proposed Development plus Other Development: AM Peak Roundabout

100			Demand		Detg	Aut	Level of	SISTS BACK	of Quesie	Phildian	E (Tiescelline)	Autor
M	Apar 10	Tum	Figuer/		HV Salt	De	lay Distriction	Wieffindlies	Distartion	Queued	Billop Hans	M ite
.5	duth	Fairw	ow Autority		0.177	Ö. I	LOS A	1.3	33.2	0.29	0.67	19.7
8T	3LT	L	51	2.0	0.183	3.5	LOS A	1.3	33.2	0.29	0.33	22.9
8R	R	•	39	2.0	0.183	7.3	LOS A	1.3	33.2	0.29	0.57	23.2
Approad	ch	1	93	2.0	0.183	6.3	LOS A	1.3	33.2	0.29	0.51	23.1
East	Fiv	ve Canyo	ns Road		r de secondo en la composición de la co En la composición de l							
1L	L	1	05	2.0	0.203	10.9	LOS B	1.4	35.8	0.25	0.66	21.2-
6T	т		6	2.0	0.206	5.4	LOS A	1.4	35.8	0.25	0.38	24.2
6R	R	1	13	2.0	0.203	7.5	LOS A	1.4	35.8	0.25	0.55	23.4
Approad	ch	2	24	2.0	0.203	9.0	LOS B	1.4	35.8	0.25	0.60	22.2
North	Fa	irview Av	enue									1999
7L	L		48	2.0	0.120	11.3	LOS B	0.9	21.7	0.35	0.72	21.7
4T	Т		59	2.0	0.120	3.9	LOS A	0.9	21.7	0.35	0.36	22.5
4R	R		7	2.0	0.120	7.5	LOS A	0.9	21.7	0.35	0.69	20.2
Approac	ch	1	14	2.0	0.120	7.3	LOS B	0.9	21.7	0.35	0.54	22.0
West	St	ar Ridge I	Road									
5L	L		16	2.0	0.050	9.3	LOS A	0.3	7.9	0.42	0.70	18.8
2T	Т		19	2.0	0.050	4.3	LOS A	0.3	7.9	0.42	0.40	22.4
2R	R		7	2.0	0.050	7.8	LOS A	0.3	7.9	0.42	0.66	19.2
Approac	ch		43	2.0	0.050	6.8	LOS A	0.3	7.9	0.42	0.56	20.4
	cles		573	2.0	0.206	7.6	LOS A	1.4	35.8	0.30	0.55	22.3

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (HCM).

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (HCM).

Approach LOS values are based on the worst delay for any vehicle movement.

Roundabout LOS Method: Same as Signalised Intersections.

Roundabout Capacity Model: SIDRA Standard.

Processed: Friday, November 06, 2009 3:33:06 PM SIDRA INTERSECTION 4.0.12.1029 Copyright ©2000-2009 Akcelik & Associates Pty Ltd www.sidrasolutions.com SIDRA ---

Project: C:\Documents and Settings\sdelsid\My Documents\Projects\014-132 Alameda County - Roundabout \Existing plus ProDevl plus OthDevl AM.sip

8000779, TJKM TRANSPORTATION CONSULTANTS, SINGLE

Left 1 Dor	ninant	216	15.7	383.0 2	ing Flow Ad 00 0.231 00 0.231 00 0.231	6.32	145.1	3.16 3.16 3.16	_	
				A Standard						
Dist (Di		success		icles acro	between the bss all lane			.ng		
	nanan at an antin patric an							19		
Roundabout										
Site:New Site	Characteristic accession in the Arth Arthur and Arthur			a and a second			ALC: NO		and a second second	
Intersecti Roundabout ROUNDABOUT										
Turn Pede Flow	strian C Rate F	irculat low Rat	ting Ad	ljustment Factor						
East: Five	0	D								
Left	5	71		0.999						
East: Five Left Thru Right	5	71 71		0.999						
ROUNDABOUT										
Pedestrian Flow Rate (ped/h)	Confli Zone Le (ft)	ct Ci ngth	ritical Gap (sec)	Follow-u Headway (sec)	p Exit Lane Capacity (veh/h)	Total Exit Flo (veh/h)	Averaç w Exit Fl (veh/h/l	ge Low Lane)		
East: Five 5	Canyons 12.00	Road	3.00	2.00	1795	206	206	5		

Movements

))

Movement Capacity Parameters Site:New Site - 1

Intersection ID: 5 Roundabout

Mov			Oppos	ing M	ovement	Total	Prac.	Prac.	Lane	Deg.
ID	Demand Flow	НV	Flow	HV	Adjust. Flow	Cap.	Deg. Satn	Spare Cap.	Util	Satn
	veh/h	plo	veh/h	00	pcu/h	veh/h	хp	010	olo	х
South:	Fairview	Avenue						,		
3L L	2	2.0	83	2.0	85	12	0.85	379	100	0.177
8T T	51	2.0	83	2.0	85	279	0.85	364	100	0.183
8R R	139	2.0	83	2.0	85	762	0.85	365	100	0.183
East: F	Tive Canyo	ons Roa	d							
1L L	105	2.0	69	2.0	71	518	0.85	318	100	0.203
6T T	6	2.0	69	2.0	71	31	0.85	313	100	0.206
6R R	113	2.0	69	2.0	71	555	0.85	318	100	0.203
North:	Fairview	Avenue								
7L L	48	2.0	114	2.0	116	399	0.85	608	100	0.120
4т т	59	2.0	114	2.0	116	487	0.85	607	100	0.120

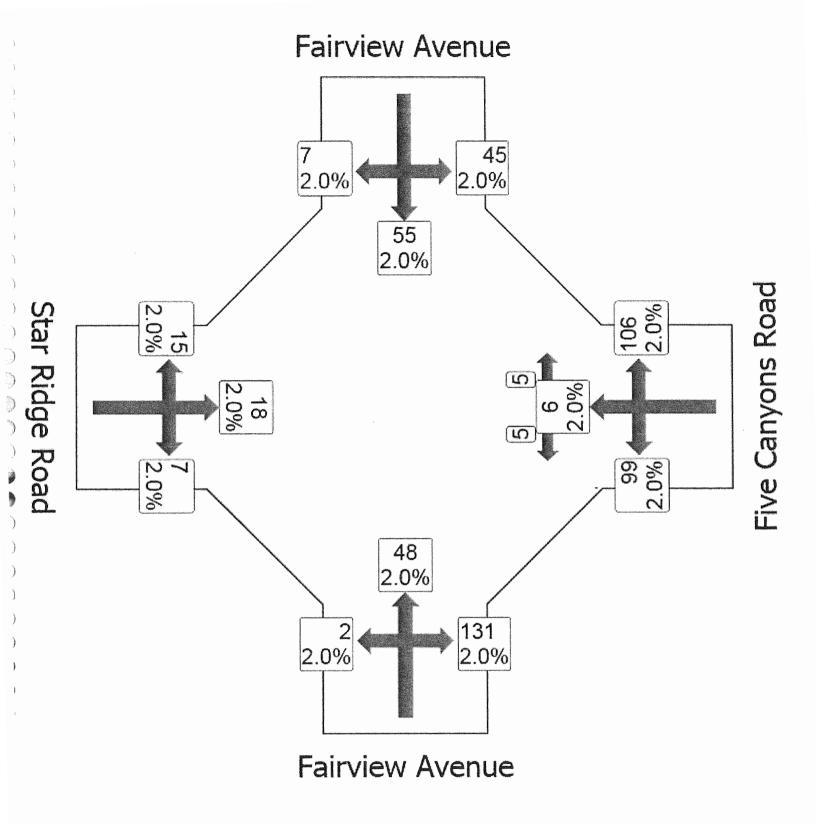
Intersection ID: 5 Roundabout

2000

)

From	То	Mov		Flow	Rate	Flow Sc	cale	Peak Flow
Approach	Approach	ID	Turn	LV	ΗV	Fixed	Var	Factor
South: Fa	irview Aven	ue						
	East	8R	Right	137	3	1.00	1.00	0.94
	North	8 T	Thru	50	1	1.00	1.00	0.94
	West	ЗL	Left	2	0	1.00	1.00	0.94
East: Fiv	e Canyons R	oad						
	South	1L	Left	103	2	1.00	1.00	0.94
	North	6R	Right	111	2	1.00	1.00	0.94
	West	6Т	Thru	6	0	1.00	1.00	0.94
North: Fa	irview Aven	ue						
North: Fa	irview Aven South		Thru	57	1	1.00	1.00	0.94
North: Fa		4 T	Thru Left			1.00		
North: Fa	South	4T 7L		47	1		1.00	0.94
	South East	4T 7L 4R	Left	47	1	1.00	1.00	0.94
	South East West	4T 7L 4R	Left	47 7	1 0	1.00	1.00	0.94 0.94
	South East West r Ridge Roa	4T 7L 4R d	Left Right	47 7 7	1 0 0	1.00	1.00	0.94 0.94 0.94

Peak Flow Period = 15 minutes


Flow Rates include effects of Flow Scale and Peak Flow Factor

Flow Rates (Separate Light and Heavy Vehicles) Site:New Site - 1

Intersection ID: 5 Roundabout

Demand flows South: Fairy 3L L		HV	LV	H	117	T 17	
	s in					ЦV	ΗV
3L L		veh/h as	used	by	the	program	
	view	Avenue					
							0
8T T	0	0	50		1	0	0
8R R							
East: Five (
1L L	103	2	0		0	0	0
1L L 6T T	0	0	6		0	0	0
6R R	0	0	0		0	111	2
North: Fair	view	Avenue					
7L L	47	1	0		0	0	0
4T T	0	0	57		1	0	0
4R R							0
West: Star 1	Ridge	e Road					
5L L	16	0	0		0	0	0
2Т Т	0	0	19		0	0	0
2R R						7	0

ø

) > > > >

	_#		4	٤	6	1		
Movement	EBL	EBT	WBT	WBR	SWL	SWR		
Lane Configurations	5	Ŷ	ĥ		¥.			
Sign Control		Free	Free		Stop			
Grade		0%	0%	an na ann an an tha an tha an tha	0%			
Volume (veh/h)	76	270	199	12	3	50		
Peak Hour Factor	0.93	0.93	0.81	0.81	0.71	0.71		
Hourly flow rate (vph)	82	290	246	15	4	70		
Pedestrians	Constantinguistics	12	12	oo saagaa salamagaa sa	12			
Lane Width (ft)		11.5	12.0		12.0			
Walking Speed (ft/s)		4.0	4.0		4.0			
Percent Blockage		1	1		1			
Right turn flare (veh)			ng lung sa sa sinaip tang pipipipi	n an	n fail fheir an tan frei an searchai			
Median type					None			
Median storage veh)			Theorem 21/10/2016 (2016)		energy and a second	a and and the set of the set of the set		
Upstream signal (ft)								
pX, platoon unblocked			an she anna anna anna anna anna	And a state of the second second	4.486/180-236-276, CS6-253			
vC, conflicting volume	272				731	277		
vC1, stage 1 conf vol		ACCURATE LANGES	0.000 A. 0.0					
vC2, stage 2 conf vol								
vCu, unblocked vol	272				731	277		
tC, single (s)	4.1				6.4	6.2		
tC, 2 stage (s)								
tF (s)	2.2	1999 - 1993			3.5	3.3		
p0 queue free %	94				99	91		
cM capacity (veh/h)	1278	She har			357	747		
Direction, Lane #	EB 1	EB 2	WB 1	SW 1.				
Volume Total	82	290	260	75				
Volume Left	82	0	0	4	and a first second second second	CT299C - Andrew Construction Construction		
Volume Right	0	0	15	70				
cSH	1278	1700	1700	703				
Volume to Capacity	0.06	0.17	0.15	0.11				
Queue Length 95th (ft)	5	0	0	9				
Control Delay (s)	8.0	0.0	0.0	10.7				
Lane LOS	A			В				
Approach Delay (s)	1.8		0.0	10.7				
Approach LOS				В				
Intersection Summary								
Average Delay			2.1					
Intersection Capacity UI	tilization	ernine skortenge I	33.5%	1	CU Lev	el of Serv	vice	
Analysis Period (min)	an to and the design of the second of the	an Anna Anna Cananalan Angara Ang	15	aan oo ahayya ta ta karda ya fa	and an instantic state and a fillent	a na capación a articleo	a por service a sub-	
						CHERT CONTRACTOR		

	٨		\mathbf{i}	*	4	×.	4	Ť	M	1	ł	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Free			Free			Yield			Yield	
Grade		0%	1 - ¹		0%		november angelen av en andere and	0%			0%	
Volume (veh/h)	8	167	9	5	123	0	7	0	5	0	0	5
Peak Hour Factor	0.92	0.89	0.89	0.82	0.82	0.92	0.38	0.92	0.38	0.92	0.92	0.92
Hourly flow rate (vph)	9	188	10	6	150	0	18	0	13	0	0	5
Pedestrians		6			6			6				
Lane Width (ft)		12.0			12.0			12.0				
Walking Speed (ft/s)		4.0			4.0			4.0				
Percent Blockage		1			1			1				
Right turn flare (veh)					n an saint an an an an Angeler an Angeler an A		an se an		0010012-11010-001-110 <u>-</u> 1-0			ere en
Median type								None			None	
Median storage veh)	anna a sua garran a sa sa				of Charles and Ast		a di salangki - salanjini ka					
Upstream signal (ft)												
pX, platoon unblocked				Contraction Contraction Contraction			on productions.		anaria: 1. 626,17			2 - 1999 (BADA 199
vC, conflicting volume	150			204			390	378	205	391	383	156
vC1, stage 1 conf vol	 Comparison (Comparison (Comparison)) 			an a		an a cita tata financia di	C.V. (4.9 (1997) (1997) (1997) (1994)	parterio per diguna en acces	an a			
vC2, stage 2 conf vol												
vCu, unblocked vol	150			204		2	390	378	205	391	383	156
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	* 4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			100			97	100	98	100	100	99
cM capacity (veh/h)	1431			1361			554	545	828	549	542	885
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	206	156	32	5								
Volume Left	9	6	18	0								
Volume Right	10	0	13	5								
cSH	1431	1361	642	885								
Volume to Capacity	0.01	0,00	0.05	0.01								
Queue Length 95th (ft)	0	0	4	0			_					
Control Delay (s)	0.4	0.3	10.9	9.1								
Lane LOS	А	А	В	А								
Approach Delay (s)	0.4	0.3	10.9	9.1								
Approach LOS			В	A								
Intersection Summary												
Average Delay			1.3									
Intersection Capacity Ut	ilization	Magan	27.6%	1	CU Leve	el of Ser	vice		Α			
Analysis Period (min)			15		ana any norma dia dia 416			an a	an a	er enter anna anna anna anna anna anna anna an		

DETAILED OUTPUT

Fairview Avenue/Five Canyon Parkway/Star Ridge Road Existing plus Proposed Development plus Other Development: PM Peak Roundabout

Roundabouts

Roundabout Basic Parameters Site:New Site - 1

Intersection ID: 5 Roundabout

١

> > Ì

							Circul	ating/F		Stream	
Cent	Circ	Insc	No.of	No.	of Av.Ent						
Island	Width	Diam.	Circ.	Ent	ry Lane	Flow	%HV	Adjust.	%Exit	Cap.	O-D
ft	ft	ft			es Width ft						Factor
South:		iew Ave									
					Entry/Ci 12.00						0.990
East: H	Five Ca	anyons	Road								
Envi	conment	t Facto	or: 1.2		Entry/Ci						
68	16	100	1	1	13.00	76	2.0	78	0	N	0.994
North:	Fairv	iew Ave	enue								
					Entry/Ci		-	-			0 000
68	16	100	1	1	11.00	176	2.0	180	0	N	0.989
West: S	Star R	idge Ro	ad								
Envi	conment	t Facto	or: 1.2	20	Entry/Ci	rculati	ng Flo	w Adjus	tment:	Medìum	
68	16	100	1	1	12.00					N	
Round	labout	Capac:	ity Mod	lel:	SIDRA St						

Roundabout Gap Acceptance Parameters Site:New Site - 1

Intersection ID: 5 Roundabout

Turn	Lane	Lane			-	-	ream		-	
	No.	Туре	Rate	Speed	Dist H	leadway	Prop Bunched	Hdwy	Dist	Foll-up Headway
			pcu/h	mph	ft			sec		
South	: Fair	view Ave	enue							
Env	ironme	nt Facto	or: 1.20) Ent	ry/Circu	lating	Flow Adj	ustment:	Medium	
Left	1 Dom	inant	121				0.137		137.0	
Thru	1 Dom	inant	121				0.137			
Right	1 Dom	inant	121	14.6	636.8	2.00	0.137	6.39	137.0	3.14
		Canyons nt Facto) Ent	ry/Circu	lating	Flow Adj	ustment:	Medium	
		inant					0.091		162.4	
Thru	1 Dom	inant	78	19.1	1290.3	2.00	0.091	5.80	162.2	2.98
Right	1 Dom	inant	78	19.1	1290.3	2.00	0.091	5.81	162.4	2.99
North	: Fair	view Ave	enue							
) Ent	ry/Circu	lating	Flow Adj	ustment:	Medium	
Left	1 Dom	inant	180	14.4	421.6	2.00	0.196	6.71	141.5	3.17
Thru	1 Dom	inant	180	14.4	421.6	2.00	0.196	6.71	141.5	3.17
Right	1 Dom	inant	180	14.4	421.6	2.00	0.196	6.71	141.5	3.17

West: Star Ridge Road

÷	4R R	16	2.0	176	2.0	180	89	0.85	359	100	0.185
	West: Star	Ridge	Road								
	5L L	14	2.0	296	2.0	302	336	0.85	1923	100	0.042
	2Т Т	16	2.0	296	2.0	302	392	0.85	1923	100	0.042
	2R R	2	2.0	296	2.0	302	56	0.85	1923	100	0.042
	* Maxim	um deg	ree of	satura	ation						

Lanes

000

3

Ą

)

à

Lane Performance Site:New Site - 1

Intersection ID: 5 Roundabout

Lane	Flow	Cap	Deg. Satn	Aver. Delav		Qие 95% Е	Back	
	veh/h	veh/h			-	veh		-
South: H 1 LTR				6.6	0.52	1.3	33.4	500.0
East: Fi 1 LTR				9.6	0.61	1.6	39.7	500.0
North: H 1 LTR				9.0	0.62	1.4	34.7	500.0
West: St 1 LTR	-	<i>.</i>		7.3	0.59	0.3	6.7	500.0

Lane Flow and Capacity Information Site:New Site - 1

Intersection ID: 5 Roundabout

Lane No.	 			Tot Cap veh/h	Satn	Util
South: 1 LTR	 		150	967	0.182	100
East: 1 1 LTR			150	1091	0.219	100
North: 1 LTR	 		150	876	0.185	100
West: 1 1 LTR	2	33	33	783	0.042	100

The capacity value for priority and continuous movements is obtained by adjusting the basic saturation flow for heavy vehicle and turning vehicle effects. Saturation flow scale applies if specified.

Flow Rates and Demand Analysis

Movement Definitions and Flow Rates (O-D)

Intersection ID: 5 Roundabout

ID	Lei	t	Throug		Rigł	
10	Total	%HV	Total	%HV	Total	
Demand fl	ows in ve	h/h as	used by	the	program	
	irview Av					
3L L	7	2.0	0	0.0	0 0	0.0
8T T	0	0.0	55	2.0	0	0.0
8R R	0	0.0	0	0.0	114	2.0
East: Fiv	ve Canyons	Road				
1L L	151	2.0	0	0.0	0	0.0
6T T	0	0.0	19	2.0	0	0.0
					69	
North: Fa	irview Av	renue				
7L L	88	2.0	0	0.0	0	0.0
					0	
			0	0.0	16	2.0
West: Sta	ir kiage F					
West: Sta	ir Ridge F 14		0	0.0	0	0.0
West: Sta 5L L	14	2.0			0	

Other

Model Settings Site:New Site - 1

Intersection ID: 5 Roundabout

* Basic Parameters: Intersection Type: Roundabout Driving on the right-hand side of the road Input data specified in US units Model Defaults: US HCM (US) Peak Flow Period (for performance): 15 minutes Unit time (for volumes): 60 minutes. HCM Delay Model option selected HCM Queue Model option selected Level of Service based on: Delay (HCM method) Queue percentile: 95%

Diagnostics Site:New Site - 1

 Processed: Friday, November 06, 2009 3:29:32 PM
 Copyright ©2000-2009 Akcelik & Associates Pty Ltd

 SIDRA INTERSECTION 4.0.12.1029
 www.sidrasolutions.com

 Project:
 C:\Documents and Settings\sdelsid\My Documents\Projects\014-132 Alameda County - Roundabout

 \Existing plus ProDevl plus OthDevl PM.sip
 8000779, TJKM, TRANSPORTATION CONSULTANTS, SINGLE

Factor

APPENDIX I

TJKM Transportation Consultants

Letter Report Re: Sight Distance Evaluation on Fairview Avenue at the Project Driveway

Vision That Moves Your Community

Transportation Consultants

August 10, 2010

Mr. Jared Frey, P.E. Project Engineer, RJA 4690 Chabot Drive, Suite 200 Pleasanton, CA, 94588

Subject: Sight Distance Evaluation on Fairview Avenue at the Project Driveway in Castro Valley

Dear Mr. Frey,

TJKM has completed an evaluation of the sight distance at the proposed project driveway on Fairview Avenue in Castro Valley.

Background

The purpose of this letter report is to provide an evaluation of the sight distance at the proposed project driveway on Fairview Avenue.

Fairview Avenue is a two-lane roadway traveling in the east west direction at the driveway. The westbound direction has a down grade of 6 to 10 percent. The roadway width varies from about 24 to 28 feet wide with curb and gutter on the side opposite the project frontage. The project frontage has a dirt shoulder.

The existing speed limit is 30 miles per hour (mph). An electronic speed radar sign is installed near the proposed project driveway for the westbound traffic traveling around the curve and the down grade.

Fairview Avenue has several driveways along the road to the east and to the west of the project driveway on both sides of the road.

The stopping sight distance required for 30 mph speed is 200 feet based on the Caltrans Highway Design Manual. The distance is increased by 20 percent for downgrades of greater than 3 percent. For the project driveway, the stopping sight distance based on the Highway Design Manual is 240 feet for the westbound down grade approach.

Summary of Findings

Based on an evaluation of the sight distance at the proposed project driveway, the findings are as listed below.

- Under existing conditions, the sight distance exceeds the requirement of 240 feet based on the Highway Design Manual.
- The sight distance from the project driveway of westbound traffic is measured to be about 330 feet.
- The sight distance from the project driveway of eastbound traffic is measured to be about 450 feet.

Pleasanton 3875 Hopyard Road Suite 200 Pleasanton, CA 94588-8526 925.463.0611 925.463.3690 fax

Fresno S16 W. Shaw Avenue Suite 200 Fresno, CA 93704-2515 S59.325.7530 559.221.4940 fax

> Sacramento 980 Ninth Street 16th Floor Sacramento, CA 95814-2736 916.449.9095

Santa Rosa 1400 N. Dutton Avenue Suite 21 Santa Rosa, CA 95401-4643 707.575.5880 707.575.5888 fax

> tjkm@tjkm.com www.tjkm.com

TJKM Transportation Consultants

Mi. Jared Prey, P.E. August 10, 2010 Page 2

In the first photo, the proposed location of the project driveway is at the far left edge at the asphalt driveway. The view is uphill and shows the downgrade and the curves that limit the sight distance at the top of the hill. The second photo shows the downhill view with the proposed driveway not quite in view.

TJKM Transportation Consultants Mr. Jared Frey, P.E. August 10, 2010 Page 3

Evaluation

TJKM made field observations and measurements at the project location during the afternoon on August 5, 2010. Photos were taken of Fairview Avenue both in the eastbound direction and westbound direction. Field measurements were made for sight distances for both directions from the project driveway.

The posted 30 mph speed limit appears to be appropriate from the observed traffic speeds of cars during the afternoon for both directions on Fairview Avenue. The electronic speed radar sign for westbound traffic seems to be effective to alert drivers of their speeds traveling around the curve and the down grade.

The measured sight distance from the proposed driveway of westbound traffic is about 330 feet where the road curves on the downgrade.

The measured sight distance from the proposed driveway of the eastbound traffic is about 450 feet. The driveway for homes with street numbers 24779 and 24783 is about 380 feet from the project.

Thank you for the opportunity to provide this evaluation. Please contact us with your comments and/or questions.

Sincerely,

Stephen Au, P.E. Project Manager

Jeff Lacap Project Engineer

APPENDIX J

East Bay Municipal Utilities District (EBMUD)

"Will Serve" Letter

,

SENT by E-MAIL - ntaylor@lamphier-gregory.com

August 18, 2011

Nathaniel H. Taylor Lamphier-Gregory 1944 Embarcadero Oakland, CA 94606

Re: 24850 Fairview Avenue, Hayward (approximate) APN#: 417-260-004 and 417-270-009

Dear Mr. Taylor:

Water service to the subject property will be available contingent upon compliance with the District's Regulations governing water service and Schedule of Rates and Charges.

If you have any questions, please call me at (510) 287-1008.

Sincerely,

Saura Arvelai

SARA CLEVELAND Administrative Secretary II New Business Office

/spc

Appendix K:

Nelda Metheny, Consulting Arborist, letter to Gary Brooks, Northbrook Homes, Protected Trees, Tract 8057, Alameda Co. August 25, 2011

Gary Brooks Northbrook Homes 4456 Black Ave., Suite 200 Pleasanton, CA 94566

Subject: Protected Trees, Tract 8057, Alameda Co.

Dear Gary,

You asked that we inspect the vegetation at the subject site and determine if there were any trees that require protection during development of the property. We visited the site on Aug. 23. Following is a summary of our findings.

The Fairview Area Specific Plan (adopted by the County Board of Supervisors Sept 14, 1997) protects large, mature trees that are defined as: trees "native to this area of California" that are 20" or greater in diameter and introduced species 30" or greater in diameter measured at 4.5 feet above ground level.

There are three trees that meet the definition for protected trees: three mature Monterey cypress (*Cupressus macrocarpa*) (photos 1 and 2). While native to California, they are not native to this area. These trees are located on the south end of the property. The Preliminary Grading Plan (RJA Aug. 1, 2011) indicates Street A will be placed between the tree in photo 1 and the group in photo 2. The graded slope is through the trunk of the failed tree and will remove it. To preserve the two trees on the west side of the road, adjust the grading so that natural grade is maintained within the dripline of the group.

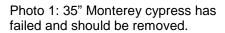


Photo 2: Two Monterey cypress trees, 30" and 37" in diameter.

Outside the east property line several feet there is a group of large, mature blue gums (Eucalyptus globulus) (Photo 3). These would be impacted by grading for Street A. I recommend adjusting the grading so that natural grade is maintained within the driplines of these trees.

Specifications for tree protection and care during grading and construction can be prepared upon request.

The Fairview Area Specific Plan requires replacement of the one Monterey cypress that will be removed with at least five 15 gallon sized trees or one boxed, native specimen tree. The species, location and method of installation must be approved by County Planning Director.

Sincerely, Milde Mathey

Nelda Matheny Consulting Arborist

Photo 3: Off-site blue gums.

Appendix L:

Letter from Leslie Zander, Zander Associates and Jeff Olberding, Olberding Environmental, Inc., to Nat Taylor, Lamphier-Gregory re: *Wetland Review Follow Up Borel Bank Property Fairview District, Alameda County*, February 16, 2012.

Environmental Consultants

February 16, 2012

Nat Taylor Lamphier-Gregory 1944 Embarcadero Oakland, CA 94606

Wetland Review Follow Up Borel Bank Property Fairview District, Alameda County

Dear Nat:

Yesterday, Jeff Olberding and I met on the Borel Bank Property in the Fairview District of Alameda County, California to look for and further describe the potential seasonal wetland areas that were identified in the Biological Resources Analysis Report prepared for the property by Olberding Environmental, Inc. June, 2010. The purpose of our visit was to first, confirm the presence of potential seasonal wetlands and second, if present, map and measure the extent of the potential wetland.

We found one area of ponded water at the top of the property near Karina Street within proposed Lot 9. This presumably is the seasonal wetland feature near the western property boundary that is referenced in the June 2010 report. The area is underlain by fill and no vegetation was present within the ponded area but grasses are germinating around the perimeter. The area measures approximately 18 feet by 60 feet (1,080 square feet). Further examination of the ponded area later in the growing season will provide data necessary to determine whether or not it may be subject to U.S. Army Corps of Engineers' jurisdiction. However, for purposes of the IS/MND, we can require a determination be made prior to initiation of construction and if it is a jurisdictional wetland, recommend mitigation. Mitigation could be provided through re-creation of similar habitat in areas to remain open on the site.

Jeff and I did not observe the other two seasonal wetland features referenced in the June 2010 report; the one near the eastern property boundary and the wetland seep on the northern facing hillside. In the northeastern portion of the property, there is a relatively steep swale that slopes towards the east and eventually heads offsite (vicinity of Lots 10 and 11). There is no defined channel in this swale and we did not observe any wetland areas in this feature. Just offsite and to the east, the swale flattens out a little and hits a dirt road that runs around the headwater of a steeply incised channel associated with a tributary to one of the main drainages on the Five Canyons property to the north. The swale is not directly connected to this drainage. There are large eucalyptus, some Monterey pine and bay trees in this area, none of which are rooted on the Borel Bank property.

Nat Taylor February 16, 2012 Page 2

Zander Associates

The ditch/erosional gully that occurs on the PG&E property where the access road for the project is proposed was also examined during our site visit. Jeff and I agreed that this feature measures approximately 1.5 feet in width for a distance of approximately 80 linear feet. It appears this area will not be disturbed for construction of the project and therefore the question of whether or not it may be subject to Corps jurisdiction does not need to be resolved for the IS/MND. No mitigation for this feature is necessary.

Should you have any questions regarding the results of out site visit yesterday or my recommendations provided herein, please don't hesitate to call me.

Sincerely,

Austri Zandu

Leslie Zander Principal Biologist

Reviewed and Accepted:

toff Ollersi

Jeff Olberding Olberding Environmental, Inc.